Advertisement

Carbon monoxide uptake and the resulting carboxyhemoglobin in man

  • H. Hauck
  • M. Neuberger
Article

Summary

In order to calculate the carboxyhemoglobin concentration in human blood under various circumstances and for particular groups or individuals, the model proposed originally by Coburn and coworkers in a slightly revised form was tested. The relevant breathing parameters were measured as minute averages and used for computation of COHb time course. At the same time blood samples were taken and analysed for carboxyhemoglobin. For four different subjects, various breathing conditions and work rates the average deviation of experimental data from theoretical predictions is 7.4%. Some data are presented graphically. Excellent conformity of all the results indicate, that the model is suitable to show the influence of most physiological and breathing parameters on the dynamics of carbon monoxide uptake.

Key words

Carbon monoxide Carboxyhemoglobin Man Model testing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Begemann H (1975) Klinische Haematologie. Georg Thieme Verlag, StuttgartGoogle Scholar
  2. Coburn RF, Blakemore WS, Forster RE (1963) Endogenous carbon monoxide production in man. J Clin Invest 42: 1172–1178Google Scholar
  3. Coburn RF, Forster RE, Kane PB (1965) Considerations of the physiological variables that determine the blood carboxyhemoglobin concentration in man. J Clin Invest 44: 1899–1910Google Scholar
  4. Dickinson CJ (1977) A computer model of human respiration. MTP press. Limited, Lancaster, pp 33–37Google Scholar
  5. Hauck H (1979) Computergestützte Messanlage zur Untersuchung der Kohlenmonoxid-Aufnahme durch die Atmung. Biomed Technik 24: 82–88Google Scholar
  6. Hauck H, Neuberger M, Resch W (1976) Rasche Carboxihaemoglobinbestimmung mittels nichtdispersiver Ultrarot-Gas-analyse. Arch Toxicol 37: 67–73Google Scholar
  7. Kelman GR (1966) Digital computer subroutine for the conversion of oxygen tension into saturation. J Appl Physiol 21: 1375–1376Google Scholar
  8. Osgood EE (1955) Development and growth of hematopoietic tissues pediatrics 15: 733–775Google Scholar
  9. Otis AB (1964) Quantitative relationships in steady-state gas exchange. In: Fenn WO, Rahn H (eds) Handbook of physiology, section 3: respiration, vol I. American Physiological Society, Washington, p 688Google Scholar
  10. Peterson JE, Stewart RD (1975) Predicting the carboxyhemoglobin levels resulting from carbon monoxide exposures. J Appl Physiol 39: 633–638Google Scholar
  11. Polgar G, Promadhat V (1971) Pulmonary function testing in children: techniques and standards. Saunders, Philadelphia, pp 339–340Google Scholar
  12. Roughton FJW, Darling RC (1944) The effect of carbon monoxide on the oxyhemoglobin dissociation curve. Am J Physiol 141: 17–31Google Scholar
  13. Schneiderman G, Goldstick TK (1978) Carbon monoxide-induced arterial wall hypoxia and atherosclerosis. Atherosclerosis 30: 1–15Google Scholar
  14. Smidt U, Nerger K (1977) Sollwerte — Normalwerte — Referenzwerte. In: Ferlinz R (ed) Lungenfunktionsdiagnostik, Dustri Verlag, München, pp 112–113Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • H. Hauck
    • 1
  • M. Neuberger
    • 1
  1. 1.Institut für Medizinische Physik and Institut für Umwelthygiene der UniversitÄt WienWienAustria

Personalised recommendations