Current Genetics

, Volume 16, Issue 4, pp 225–239 | Cite as

A yeast Telomere Binding Activity binds to two related telomere sequence motifs and is indistinguishable from RAPT

  • Mark S. Longtine
  • Nancy Maxfield Wilson
  • Marie E. Petracek
  • Judith Berman
Original Articles


Telomere Binding Activity (TBA), an abundant protein from Saccharomyces cerevisiae, was identified by its ability to bind to telomeric poly(C1–3A) sequence motifs. The substrate specificity of TBA has been analyzed in order to determine whether the activity binds to a unique structure assumed by the irregularly repeating telomeric sequences or whether the activity recognizes and binds to subset of specific sequences found within the telomere repeat tracts. Deletion analysis and DNase I protection assays demonstrate that TBA binds specifically to two poly(C1–3A) sequences that differ by one nucleotide. The methylation of four guanine residues, located at identical relative positions within these two binding sequences, interferes with TBA binding to the substrates. A synthetic olignucleotide containing a single TBA binding site can function as a TBA binding substrate. The TBA binding site shares homology with the binding sites reported for the Repressor/Activator Protein 1 (RAP1), Translation Upshift Factor (TUF) and General Regulatory Factor (GRFI) transcription factors, and TBA binds directly to RAP1/TUF/GRFI substrate sequences. Yeast TBA preparations and the RAP1 gene product expressed in E. coli cells are both similarly sensitive to in vitro protease digestion. Affinity-purified TBA extracts include a protein indistinguishable from RAP1 in binding specificity, size, and antigenicity. The binding affinity of TBA for the two telomeric poly(C1–3A) binding sites is higher than its affinity for any of the other binding substrates used for its identification. In extracts of yeast spheroplasts prepared by incubation of yeast cells with Zymolyase, an altered, proteolyzed form, of TBA (TBA-S) is present. TBA-S has a faster mobility in gel retardation assays and SDS-PAGE gels, yet it retains the DNA binding properties of standard TBA preparations: it binds to RAP1/TUF/GRFI substrates with the same relative binding affinity and protects poly(C1–3A) tracts from DNase I digestion with a “footprint” identical to that of standard TBA preparations.

Key words

Telomere Binding Activity (TBA) Yeast Telomeric binding sites RAP1 gene product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abovich N, Rosbash M (1984) Mol Cell Biol 4:1871–1879Google Scholar
  2. Abraham J, Nasmyth KA, Strathern JN, Klar AJS, Hicks JB (1984) J MoL Biol 176:307–331Google Scholar
  3. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current Protocols in Molecular Biology. John Wiley & Sons, New YorkGoogle Scholar
  4. Berman J, Tachibana CY, Tye B-K (1986) Proc Natl Acad Sci USA 83:3713–3717Google Scholar
  5. Berman J, Eisenberg S, Tye B-K (1987) Methods Enzymol 155:528–537Google Scholar
  6. Blackburn EH, Szostak JW (1984) Annu Rev Biochem 53:163–194Google Scholar
  7. Brand AH, Micklem G, Nasmyth K (1987) Cell 51:709–719Google Scholar
  8. Buchman AR, Kimmerly WJ, Rine J, Kornberg RD (1988a) Mol Cell Biol 8:210–225Google Scholar
  9. Buchman AR, Lue NF, Kornberg RD (1988b) Mol Cell Biol 8:5086–5099Google Scholar
  10. Butler G, McConnell DJ (1988) Curr Gen 14:405–412Google Scholar
  11. Button LL, Astell CR (1986) Mol Cell Biol 6:1352–1356Google Scholar
  12. Capieaux E, Goffeau A (1988) Yeast 4:S389Google Scholar
  13. Carson MJ, Hartwell L (1985) Cell 42:249–257Google Scholar
  14. Chambers A, Stanway C, Kingsman AJ, Kingsman SM (1988) Nucleic Acids Res 16:8245–8260Google Scholar
  15. Chan CSM, Tye B-K (1983) Cell 33:563–573Google Scholar
  16. Chan CSM (1985) Dissertation, Cornell University, Ithaca, New YorkGoogle Scholar
  17. Diffley JFX, Stillman B (1988) Proc Natl Acad Sci USA 85:2120–2124Google Scholar
  18. Donovan DM, Pearson NJ (1986) Mol Cell Biol 6:2429–2435Google Scholar
  19. Dorn, Bollekens AJ, Staub A, Benoist C, Mathis D (1987) Cell 50:863–872Google Scholar
  20. Driever W, Nüsslein-Volhard C (1988) Cell 54:83–93Google Scholar
  21. Gershoni JM, Palace GE (1983) Anal Biochem 131:1–15Google Scholar
  22. Gottschling DE, Zakain VA (1988) Cell Bio 2:291–307Google Scholar
  23. Greider CW, Blackburn EH (1985) Cell 43:405–513Google Scholar
  24. Greider CW, Blackburn EH (1987) Cell 51:887–898Google Scholar
  25. Greider CW, Blackburn EH (1989) Nature 337:331–337Google Scholar
  26. Henderson E, Hardin CC, Walk SK, Tinoco Jr I, Blackburn EH (1987) Cell 51:899–908Google Scholar
  27. Herruer MH, Mager WH, Woudt LP, Nieuwint RTM, Wassenaar GM, Groeneveld P, Planta RJ (1987) Nucleic Acids Res 15:10133–10144Google Scholar
  28. Huet J, Sentenac A (1987) Proc Natl Acad Sci USA 84:3648–3652Google Scholar
  29. Huet J, Cottrelle P, Cool M, Vignais M-L, Thiele D, Marck C, Buhler J-M, Sentenac A, Fromageot P (1985) EMBO J 4:3539–3547Google Scholar
  30. Jackson SP, Tjian R (1988) Cell 55:125–133Google Scholar
  31. Kadonaga JT, Tjian R (1986) Proc Natl Acad Sci USA 83:5889–5893Google Scholar
  32. Kimmerly W, Buchman A, Kornberg R, Rine J (1988) EMBO J 7:2241–2253Google Scholar
  33. Kimmerly WJ, Rine J (1987) Mol Cell Biol 7:4225–4237Google Scholar
  34. Laemmli UK (1970) Nature 227:680–685Google Scholar
  35. Lue NF, Buchman AR, And Kornberg RD (1989) Proc Natl Acad Sci USA 86:486–490Google Scholar
  36. Lundblad V, and Szostak JW (1989) Cell 57:633–643Google Scholar
  37. Lustig AJ, Petes TD (1986) Proc Natl Acad Sci USA 83:1398–1402Google Scholar
  38. Machida M, Uemura H, Jigami Y, Tanaka H (1988) Yeast 4:S408Google Scholar
  39. Maniatis T, Fritsch E, Sambrook J (1982) Molecular cloning: a loboratory manual Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  40. Maxam AM, Gilbert W (1980) Meth Enzymol 65:499–560Google Scholar
  41. McClintock B (1941) Genetics 26:234–282Google Scholar
  42. McClintock B (1942) Proc Natl Acad Sci USA 28:458–463Google Scholar
  43. Müller GM, Shapira M, Arnon R (1982) Proc Natl Acad Sci USA 79:569–573Google Scholar
  44. Murray AW, Claus TE, Szostak JW (1988) Mol Cell Biol 8:4642–4650Google Scholar
  45. Oliphant AR, Nussbaum AL, Struhl K (1986) Gene 44:177–183Google Scholar
  46. Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Proc Natl Acad Sci USA 78:6354–6358Google Scholar
  47. Pluta AF, Dani GM Spear BB, Zakian VA (1984) Proc Natl Acad Sci USA 81:1475–1479Google Scholar
  48. Raymondjean M, Cereghini S, Yaniv M (1988) Proc Natl Acad Sci USA 85:757–761Google Scholar
  49. Resnick MA, Martin P (1976) Mol Gen Genetics 143:119–129Google Scholar
  50. Rosenfeld PJ, Kelley TJ (1986) J Biol Chem 261:1398–1408Google Scholar
  51. Rotenberg MO, Woolford JL (1986) Mol Cell Biol 6:674–687Google Scholar
  52. Sanger F, Nicklen S, Carlson AR (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  53. Shampay J, Blackburn EH (1987) Proc Natl Acad Sci USA 85:534–538Google Scholar
  54. Shampay J, Szostak JW, Blackburn EH (1984) Nature 310:154–157Google Scholar
  55. Shore D, Nasmyth KA (1987) Cell 51:721–732Google Scholar
  56. Shore D, Stillman DJ, Brand AH, Nasmyth KA (1987) EMBO J 6:461–467Google Scholar
  57. Shuey DJ, Parker CS (1986) J Biol Chem 261:1934–1940Google Scholar
  58. Szostak JW, Blackburn EH (1982) Cell 29:245–255Google Scholar
  59. Vieira J, Messing J (1987) Methods Enzymol 153:3–11Google Scholar
  60. Vinson CR, LaMarco KL, Johnson PF, Landschulz WH, McKnight SL (1988) Genes Dev 2:801–806Google Scholar
  61. Walmsley RM, Chan CSM, Tye B-K, Petes TD (1984) Nature 10:157–160Google Scholar
  62. Walmsley RM, Szostak JW, Petes TD (1983) Nature 302:84–86Google Scholar
  63. Watson JD (1972) Nature 239:197–201Google Scholar
  64. Woudt LP, Mager WH, Nieuwint RTM, Wassenaar GM, van der Kuyl AC, Murre JJ, Hoekman MGM, Borckhoff PGM, Planta RJ (1987) Nucleic Acids Res 15:6037–6048Google Scholar
  65. Woudt LP, Smit AB, Mager WH, Planta RJ (1986) EMBO J 5:1037–1040Google Scholar
  66. Xiao H, Lis JT (1986) Mol Cell Biol 6:3200–3206Google Scholar
  67. Zahler AM, Prescott DM (1988) Nucleic Acids Res 16:6953–6972Google Scholar
  68. Zakian VA, Blanton HM (1988) Mol Cell Biol 8:2257–2260Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Mark S. Longtine
    • 1
  • Nancy Maxfield Wilson
    • 1
  • Marie E. Petracek
    • 1
  • Judith Berman
    • 1
    • 2
  1. 1.Department of Plant BiologyUniversity of MinnesotaSt. PaulUSA
  2. 2.Plant Molecular Genetics InstituteUniversity of MinnesotaSt. PaulUSA

Personalised recommendations