Molecular and General Genetics MGG

, Volume 203, Issue 3, pp 421–429

Expression of biosynthetic genes from Pseudomonas aeruginosa and Escherichia coli in the heterologous host

  • David J. Jeenes
  • Leda Soldati
  • Heinz Baur
  • John M. Watson
  • Annick Mercenier
  • Cornelia Reimmann
  • Thomas Leisinger
  • Dieter Haas
Article

Summary

We examine the expression of constitutive or repressible, monocistronic genes from Pseudomonas aeruginosa and Escherichia coli after their transfer to the heterologous host. To this end, chromosomal DNA from P. aeruginosa was cloned into the mobilizable broad-host-range vector pKT240; recombinant plasmids carrying the argA, argF, or proC genes were identified by complementation of the corresponding auxotrophic mutations. The isofunctional E. coli genes and the E. coli proB gene were subcloned into pKT240 from existing recombinant plasmids. The enzyme expression specified by the Pseudomonas genes in E. coli, calculated per gene copy, ranged from 0.3%–5% of the levels observed in Pseudomonas. Fusion of the P. aeruginosa proC gene to the E. coli consensus tac promoter resulted in very high proC enzyme production in E. coli, indicating that, at least in this case, the expression barrier is essentially at the level of transcriptional initiation. The E. coli argA and argF enzymes, which are controlled by repression in their native host, were synthesized constitutively in P. aeruginosa at 5% of the levels measured in E. coli under derepressed conditions. The constitutive E. coli proB and proC genes were expressed at high levels (ca. 50%) in the heterologous host. These results support the idea that P. aeruginosa may be a more permissive host than E. coli for the heterologous expression of genes from gram-negative bacteria.

Key words

Pseudomonas aeruginosa Heterologous expression Arginine biosynthesis Proline biosynthesis Transcriptional initiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagdasarian MM, Amann E, Lurz R, Rückert B, Bagdasarian M (1983) Activity of the hybrid trp-lac(tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad-host-range, controlled-expression vectors. Gene 26:273–282Google Scholar
  2. Buckel P, Zehelein E (1981) Expression of Pseudomonas fluorescens d-galactose dehydrogenase in E. coli. Gene 16:149–159Google Scholar
  3. Carlson CA, Stewart GJ, Ingraham JL (1985) Thymidine salvage in Pseudomonas stutzeri and Pseudomonas aeruginosa provided by heterologous expression of Escherichia coli thymidine kinase gene. J Bacteriol 163:291–295Google Scholar
  4. Casadaban MJ, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: In vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4530–4533Google Scholar
  5. Chang ACY, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156Google Scholar
  6. Chesney RH, Scott JR, Vapnek D (1979) Integration of the plasmid prophages P1 and P7 into the chromosome of Escherichia coli. J Mol Biol 130:161–173Google Scholar
  7. Clarke PH, Laverack PD (1983) Expression of the argF gene of Pseudomonas aeruginosa in Pseudomonas aeruginosa, Pseudomonas putida, and Escherichia coli. J Bacteriol 154:508–512Google Scholar
  8. Consevage MW, Porter RD, Phillips AT (1985) Cloning and expression in Escherichia coli of histidine utilization genes from Pseudomonas putida. J Bacteriol 162:138–146Google Scholar
  9. Crabeel M, Charlier D, Cunin R, Glansdorff N (1979) Cloning and endonuclease restriction analysis of argF and of the control region of the argECBH bipolar operon in Escherichia coli. Gene 5:207–231Google Scholar
  10. Darzins A, Nixon LL, Vanags RI, Chakrabarty AM (1985) Cloning of Escherichia coli and Pseudomonas aeruginosa phosphomannose isomerase genes and their expression in alginate-negative mutants of Pseudomonas aeruginosa. J Bacteriol 161:249–257Google Scholar
  11. Deutch AH, Smith CJ, Rushlow KE, Kretschmer PJ (1982) Escherichia coli Δ1 reductase: gene sequence, protein overproduction and purification. Nucl Acids Res 10:7701–7714Google Scholar
  12. Deutch AH, Rushlow KE, Smith CJ (1984) Analysis of the Escherichia coli proBA locus by DNA and protein sequencing. Nucl Acids Res 12:6337–6355Google Scholar
  13. Dretzen G, Bellard M, Sassone-Corsi P, Chambon P (1981) A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Anal Biochem 112:295–298Google Scholar
  14. Drew R (1984) Complementation analysis of the aliphatic amidase genes of Pseudomonas aeruginosa. J Gen Microbiol 130:3101–3111Google Scholar
  15. Dykstra CC, Prasher D, Kushner SR (1984) Physical and biochemical analysis of the cloned recB and recC genes of Escherichia coli K-12. J Bacteriol 157:21–27Google Scholar
  16. Früh R, Watson JM, Haas D (1983) Construction of recombination-deficient strains of Pseudomonas aeruginosa. Mol Gen Genet 191:334–337Google Scholar
  17. Gergen JP, Stern RH, Wensink PC (1979) Filter replicas and permanent collection of recombinant DNA plasmids. Nucl Acids Res 8:2115–2136Google Scholar
  18. Gragerov AI, Chenchik AA, Aivasashvilli VA, Beabealashvilli RS, Nikiforov VG (1984) Escherichia coli and Pseudomonas putida RNA polymerases display identical contacts with promoters. Mol Gen Genet 195:511–515Google Scholar
  19. Haas D, Kurer V, Leisinger T (1972) N-Acetylglutamate synthetase of Pseudomonas aeruginosa. An assay in vitro and feedback inhibition by arginine. Eur J Biochem 31:290–295Google Scholar
  20. Haas D, Holloway BW, Schamböck A, Leisinger T (1977) The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet 154:7–22Google Scholar
  21. Haas D, Cryz Jr SJ, Itoh Y, Leisinger T, Lüthi E, Mercenier A, Reimmann C, Rella M, Soldati L, Watson JM, Wretlind B (1984) Some applications of transposon insertion mutagenesis in Pseudomonas. In: Heslot H (ed) Génétique des microorganismes industriels. Société Française de Microbiologie, pp 91–111Google Scholar
  22. Hayzer DJ (1983) Sub-cloning of the wild-type proAB region of the Escherichia coli genome. J Gen Microbiol 129:3215–3225Google Scholar
  23. Hayzer DJ, Leisinger T (1980) The gene-enzyme relationship of proline biosynthesis in Escherichia coli. J Gen Microbiol 118:287–293Google Scholar
  24. Hediger MA, Johnson DF, Nierlich DP, Zabin I (1985) DNA sequence of the lactose operon: the lacA gene and the transcriptional termination region. Proc Natl Acad Sci USA 82:6414–6418Google Scholar
  25. Holloway BW (1984) Pseudomonads. In: Ball C (ed) Genetics and breeding of industrial microorganisms. CRC Press Inc, Boca Raton, Florida, p 63–92Google Scholar
  26. Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197Google Scholar
  27. Inouye S, Nakazawa A, Nakazawa T (1985) Determination of the transcription initiation site and identification of the protein product of the regulatory gene xylR for xyl operons on the TOL plasmid. J Bacteriol 163:863–869Google Scholar
  28. Isaac JH, Holloway BW (1972) Control of arginine biosynthesis in Pseudomonas aeruginosa. J Gen Microbiol 73:427–438Google Scholar
  29. Itoh Y, Watson JM, Haas D, Leisinger T (1984) Genetic and molecular characterization of the Pseudomonas plasmid pVS1. Plasmid 11:206–220Google Scholar
  30. Krishna RV, Leisinger T (1979) Biosynthesis of proline in Pseudomonas aeruginosa. Partial purification and characterization of γ-glutamylkinase. Biochem J 181:215–222Google Scholar
  31. Krishna RV, Beilstein P, Leisinger T (1979) Biosynthesis of proline in Pseudomonas aeruginosa. Properties of γ-glutamyl phosphate reductase and 1-pyrroline-5-carboxylate reductase. Biochem J 181:223–230Google Scholar
  32. Leisinger T, Haas D (1975) N-acetylglutamate synthase of Escherichia coli: regulation of synthesis and activity by arginine. J Biol Chem 250:1690–1693Google Scholar
  33. Martin C, Cami B, Borne F, Jeenes DJ, Haas D, Patte J-C (1986) Heterologous expression and regulation of the lysA genes of Pseudomonas aeruginosa and Escherichia coli. Mol Gen Genet 203:430–434Google Scholar
  34. Mergeay M, Boyen A, Legrain C, Glansdorff N (1978) Expression of Escherichia coli K-12 arginine genes in Pseudomonas fluorescens. J Bacteriol 136:1187–1188Google Scholar
  35. Mermod N, Lehrbach PR, Reineke W, Timmis KN (1984) Transcription of the TOL plasmid toluate catabolic pathway operon of Pseudomonas putida is determined by a pair of co-ordinately and positively regulated overlapping promoters. EMBO J 3:2461–2466Google Scholar
  36. Minton NP, Clarke LE (1985) Identification of the promoter of the Pseudomonas gene coding for carboxypeptidase G2. J Mol Appl Genet 3:26–35Google Scholar
  37. Nagahari K, Sano Y, Sakaguchi K (1977) Derepression of E. coli trp operon on interfamilial transfer. Nature 266:745–746Google Scholar
  38. Rella M, Mercenier A, Haas D (1985) Transposon insertion mutagenesis of Pseudomonas aeruginosa with a Tn5 derivative: application to physical mapping of the arc gene cluster. Gene 33:293–303Google Scholar
  39. Sano Y, Kageyama M (1984) Genetic determinant of pyocin AP41 as an insert in the Pseudomonas aeruginosa chromosome. J Bacteriol 158:562–570Google Scholar
  40. Smyth PF, Clarke PH (1975) Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis. J Gen Microbiol 90:81–90Google Scholar
  41. Stalon V, Ramos F, Piérard A, Wiame J-M (1972) Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. A comparison the anabolic transferase and with a mutationally modified catabolic transferase. Eur J Biochem 29:25–35Google Scholar
  42. Van Vliet F, Cunin R, Jacobs A, Piette J, Gigot D, Lauwereys M, Piérard A, Glansdorff N (1984) Evolutionary divergence of genes for ornithine and aspartate carbamoyl-transferases-complete sequence and mode of regulation of the Escherichia coli argF gene; comparison of argF with argI and pyrB. Nucl Acids Res 12:6277–6289Google Scholar
  43. Yamamoto T, Yamagata S, Horii K, Yamagishi S (1982) Comparison of transcription of β-lactamase genes specified by various ampicillin transposons. J Bacteriol 150:269–276Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • David J. Jeenes
    • 1
  • Leda Soldati
    • 1
  • Heinz Baur
    • 1
  • John M. Watson
    • 1
  • Annick Mercenier
    • 1
  • Cornelia Reimmann
    • 1
  • Thomas Leisinger
    • 1
  • Dieter Haas
    • 1
  1. 1.Mikrobiologisches InstitutEidgenössische Technische HochschuleZürichSwitzerland
  2. 2.CSIRO Division of Plant IndustryCanberra CityAustralia
  3. 3.Transgène SAStrasbourgFrance

Personalised recommendations