Advertisement

Archives of Microbiology

, Volume 149, Issue 3, pp 255–260 | Cite as

The budding bacteria, Pirellula and Planctomyces, with atypical 16S rRNA and absence of peptidoglycan, show eubacterial phospholipids and uniquely high proportions of long chain beta-hydroxy fatty acids in the lipopolysaccharide lipid A

  • B. D. Kerger
  • C. A. Mancuso
  • P. D. Nichols
  • D. C. White
  • T. Langworthy
  • M. Sittig
  • H. Schlesner
  • P. Hirsch
Original Papers

Abstract

Fatty acids of twelve strains of budding bacteria (Planctomyces and Pirellula spp.), which have atypical 16S rRNA and do not contain peptidoglycan cell walls, were shown to contain typical diacyl polar lipids with no indication of isoprenoid ether lipids suggestive of a relationship with the archaebacteria. The major ester-linked fatty acids of the phospholipids were palmitic, palmitoleic and oleic acids, which are more typical of microeukaryotes than of eubacteria. Lipopolysaccharide lipid A (LPS) was detected; it contained major proportions of long chain normal 3-OH fatty acids (3-OH eicosanoic at 23% and 17% of the total in two strains of Planctomyces, and 3-OH octadecanoic at 18%, and 3-OH palmitic at 11% of the total in one strain of Pirellula). Major portions of long chain 3-OH fatty acids in the LPS are extremely unusual and provide another atypical property of these organisms. Each strain investigated showed a specific total fatty acid composition, reflecting the diversity in 16S rRNA nucleotide catalogues.

Key words

Fatty acid composition Pirellula Planctomyces Non-prosthecate, budding bacteria Phylogeny of eubacteria Lipids Fatty acids Lipopolysaccharides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauld J, Staley JT (1976) Planctomyces maris sp. nov.: a marine isolate of the Planctomyces-Blastocaulis group of budding bacteria. J Gen Microbiol 97:45–55Google Scholar
  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917Google Scholar
  3. Dowling NJE, Widdel F, White DC (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria. J Gen Microbiol 132:1815–1825Google Scholar
  4. Dunkelblum E, Tan SH, Silk PJ (1985) Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry. J Chem Ecol 11:265–277Google Scholar
  5. Famurewa O, Sonntag HG, Hirsch P (1983) Avirulence of 27 bacteria that are budding, prosthecate, or both. Int J Syst Bacteriol 33:565–572Google Scholar
  6. Franzmann PD, Skerman VBD (1984) Gemmata obscuriglobus a new genus and species of the budding bacteria. Antonie van Leeuwenhoek J Microbiol Serol 50:261–268Google Scholar
  7. Gebers R, Wehmeyer U, Roggentin T, Schlesner H, Kölbel-Boelke J, Hirsch P (1985) Deoxyribonucleic acid base compositions and nucleotide distributions of 65 strains of budding bacteria. Int J Syst Bacteriol 35:260–269Google Scholar
  8. Giovannoni SJ, Schabtach E, Castenholz RW (1987) Isosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs. Arch Microbiol 147:276–284Google Scholar
  9. Goossens H, Rijpstra WIR, Duren RR, de Leeuw JW, Schenck PA (1985) Bacterial contribution to sedimentary organic matter; a comparative study of lipid moieties in bacteria and recent sediments. Adv Organic Geochem 10:683–696Google Scholar
  10. Guckert JB, Antworth CP, Nichols PD, White DC (1985) Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31:147–158Google Scholar
  11. Guckert JB, Hood MA, White DC (1986) Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of clycopropyl fatty acids. Appl Environ Microbiol 52:794–801Google Scholar
  12. Hirsch P (1974) Budding bacteria. Ann Rev Microbiol 28:391–444Google Scholar
  13. Hirsch P, Rades-Rohkohl E (1983a) Microbial diversity in a groundwater aquifer in Northern Germany. Dev Industr Microbiol 24:183–200Google Scholar
  14. Hirsch P, Rades-Rohkohl E (1983b) Die Zusammensetzung der natürlichen Grundwasser-Mikroflora und Untersuchungen über ihre Wechselbeziehungen mit Fäkalbakterien. DVGW Schriftenr Wasser 35:59–80Google Scholar
  15. Hirsch P, Müller M (1985) Planctomyces limnophilus sp. nov., a stalked and budding bacterium from freshwater. Syst Appl Microbiol 6:276–280Google Scholar
  16. Hirsch P, Müller M (1986) Methods and sources for the enrichment and isolation of budding, nonprosthecate bacteria from freshwater. Microbiol Ecol 12:331–341Google Scholar
  17. Kerger BD, Nichols PD, Sand W, Bock E, White DC (1987) Association of acid producing Thiobacilli with degradation of concrete: analysis by “signature” fatty acids from the polar lipids and lipopolysaccharide. J Ind Microbiol 2 (in press)Google Scholar
  18. Kölbel-Boelke J, Gebers R, Hirsch P (1985) Genome size determinations for 33 strains of budding bacteria. Int J Syst Bacteriol 35:270–273Google Scholar
  19. König H, Schlesner H, Hirsch P (1984) Cell wall studies on budding bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp. Arch Microbiol 138:200–205Google Scholar
  20. Kroppenstedt RM, Kutzner HJ (1978) Biochemical taxonomy of some problem actinomycetes. Zbl Bakt Microbiol Hyg, I. suppl 6:125–133Google Scholar
  21. Langworthy TA (1982) Lipids of Thermoplasma. Meth Enzymol 88:396–406Google Scholar
  22. Langworthy TA, Tornebene TG, Holzer G (1982) Lipids of archaebacteria. Zbl Bakt Hyg I. Abt Orig C3:228–244Google Scholar
  23. Liesack W, König H, Schlesner H, Hirsch P (1986) Chemical composition of the peptidoglycan-free cell envelopes of budding bacteria of the Pirella/Planctomyces group. Arch Microbiol 145:361–366Google Scholar
  24. Nichols PD, Guckert JG, White DC (1986) Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Meth 5:49–55Google Scholar
  25. Parker JH, Smith GA, Fredrickson HL, Vestal JR, White DC (1982) Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide lipid A, for Gram-negative bacteria in sediments. Appl Environm Microbiol 44:1170–1177Google Scholar
  26. Rothe B, Fischer A, Hirsch P, Stittig M, Stackebrandt E (1987) The phylogenetic position of the budding bacteria Blastobacter aggregatus and Gemmobacter aquatilis gen. nov., sp. nov. Arch Microbiol 147:92–99Google Scholar
  27. Saddler JN, Wardlaw AC (1980) Extraction, distribution, and biodegradation of bacterial lipopolysaccharides in estuarine sediments. Antonie van Leeuwenhoek J Microbiol Serol 46:27–39Google Scholar
  28. Schlesner H (1983) Isolierung und Beschreibung knospender und prosthekater Bakterien aus der Kieler Förde. Ph. D. Thesis, Univ of Kiel (FRG), 200 ppGoogle Scholar
  29. Schlesner H (1986) Pirella marina sp. nov., a budding, peptidoglycan-less bacterium from brackish water. Syst Appl Microbiol 8:177–180Google Scholar
  30. Schlesner H, Hirsch P (1984) Assignment of ATCC 27377 to Pirella gen. nov. as Pirella staleyi comb. nov. Int J Syst Bacteriol 34:492–495Google Scholar
  31. Schlesner H, Hirsch P (1987) Rejection of the genus name Pirella Schlesner and Hirsch (1984) for pear-shaped budding bacteria and proposal to create the genus Pirellula gen. nov. Int J Syst Bacteriol 37:441Google Scholar
  32. Schlesner H, Stackebrandt E (1986) Assignment of the genera Planctomyces and Pirella to a new family Planctomycetaceae fam. nov., and a new order Planctomycetales ord. nov. Syst Appl Microbiol 8:174–176Google Scholar
  33. Stackebrandt E, Ludwig W, Schubert W, Klink F, Schlesner H, Roggentin T, Hirsch P (1984) Molecular genetic evidence for early evolutionary origin of budding peptidoglycan-less eubacteria. Nature 307:735–737Google Scholar
  34. Stackebrandt E, Fischer A, Hirsch P, Roggentin T, Schlesner H (1986) The phylogeny of an ancient group of budding peptidoglycan-less eubacteria: the genera Planctomyces and Pirella. Endocyt Cell Res 3:29–40Google Scholar
  35. Staley JT (1973) Budding bacteria of the Pasteuria-Blastobacter group. Can J Microbiol 19:606–614Google Scholar
  36. Wilkinson SG (1977) Composition and structure of bacterial lipopolysaccharides. In: Sutherland E (ed) Surface carbohydrates of the prokaryotic cells, vol I, chap 4. Academic Press, New York, pp 97–175Google Scholar
  37. Woese CR, Stackebrandt E, Macke TJ, Fox GE (1985) A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 6:143–151Google Scholar
  38. Woese CR (1987) Bacteriol evolution. Microbiol Rev 51:221–271Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • B. D. Kerger
    • 1
  • C. A. Mancuso
    • 1
  • P. D. Nichols
    • 2
  • D. C. White
    • 3
  • T. Langworthy
    • 4
  • M. Sittig
    • 5
  • H. Schlesner
    • 5
  • P. Hirsch
    • 5
  1. 1.Department of Biological ScienceFlorida State UniversityTallahasseeUSA
  2. 2.Marine LaboratoriesCSIRO Division of OceanographyHobartAustralia
  3. 3.Institute for Applied MicrobiologyKnoxvilleUSA
  4. 4.Department of Microbiology, School of MedicineThe University of South DakotaVermillionUSA
  5. 5.Institut für Allgemeine MikrobiologieUniversität KielKielFederal Republic of Germany

Personalised recommendations