Effects and post-effects of two-hour exhausting exercise on composition and gas transport functions of blood

  • D. Böning
  • W. Skipka
  • P. Heedt
  • W. Jenker
  • U. Tibes
Article

Summary

Eleven male sport students (age 23.3±1.7 years) exercised for 2 h on a bicycle ergometer (60 rpm), the braking force of which was regulated to yield a constant pulse rate (156±3 min−1). Before, at end of, and 3 and 6 h after exercise blood was sampled from a cubital vein and an earlobe for measurement of hemoglobin (Hb) concentration, hematocrit (Hct) value, osmolality (Osm), plasma protein (Prot), sodium (Na+), potassium (K+), inorganic phosphate (Pi), and lactate (Lac) concentrations, red cell 2,3-diphosphoglycerate (DPG) and adenosin triphosphate (ATP) concentrations, acid base status and half saturation pressure (P50) of the oxygen dissociation curve. At end of exercise [Hb], Hct, [Prot], Osm, [K+], [Pi] and [Lac] were significantly elevated, pH in ear lobe (+0.04) and venous blood (+0.08) was also increased by both respiratory and nonrespiratory effects (BE + 1.4 mmol/l). The oxygen dissociation curve showed an unexplained slight right shift (standard P50+0.19 kPa). During the post-exercise period most parameters approximated to control values after only 3 h. [Prot] and especially [Pi], however, remained elevated while [DPG] slightly rose during the post-exercise period. It is suggested that these changes are first signs of adaptation to exercise, perhaps caused by endocrine stimulation.

Key words

Exertion Physical training Blood Acid base status Oxygen dissociation curve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. åstrand, P. O., Rhyming, J.: A nomogram for calculating of aerobic capacity (physical fitness) from pulse rate during submaximal work. J. Appl. Physiol. 7, 218–221 (1954–1955)Google Scholar
  2. Böning, D., Schweigart, U., Stegemann, J., Nutz, V.: The in vivo and in vitro CO2-equilibration curves of blood during acute hypercapnia and hypocapnia. I. Experimental investigations. Pflügers Arch. 350, 201–212 (1974)Google Scholar
  3. Böning, D., Schweigart, U., Hemmer, B., Tibes, U.: Influences of exercise and endurance training on the oxygen dissociation curve of blood under in vivo and in vitro conditions. Eur. J. Appl. Physiol. 34, 1–10 (1975)Google Scholar
  4. Böning, D., Schweigart, U., Tibes, U.: Red cell hemoglobin, hydrogen ion and electrolyte concentrations during exercise in trained and untrained subjects. Eur. J. Appl. Physiol. 35, 243–249 (1976)Google Scholar
  5. Braumann, K. M., Böning, D., Trost, F.: Oxygen dissociation curves in trained and untrained subjects. Eur. J. Appl. Physiol. 42, 51–60 (1979)Google Scholar
  6. Costill, D. L., Fink, W. J.: Plasma volume changes following exercise and thermal dehydration. J. Appl. Physiol. 37, 521–525 (1974)Google Scholar
  7. Dempsey, J. A., Rodrigues, J., Reddan, W. G., Shahidi, N. T., Mac Dougall, J. D.: Muscular exercise, 2,3-DPG and oxy-hemoglobin affinity. Int. Z. Angew. Physiol. 30, 34–39 (1971)Google Scholar
  8. Devlin, J. G., Varma, M. P. S.: Effects of training and exercise on growth hormone release im man. Postgrad. Med. J. 49, 144–147 (1973)Google Scholar
  9. Duhm, J., Gerlach, E.: Metabolism and function of 2,3-diphosphoglycerate in red blood cells. In: The human red cell in vitro (J. Greenwalt, G. A. Jamieson, eds.), pp. 111–152. NewYork: Grune and Stratton 1974Google Scholar
  10. Hartung, M., Venrath, H., Hollmann, W., Isselhardt, W., Jaenckner, D.: über die Atmungsregulation bei Arbeit, Forschungsber. d. Landes Nordrh.-Westf. Nr. 1738. Köln, Opladen: Westdeutscher Verlag 1966Google Scholar
  11. Keul, J., Haralambie, G.: Die Wirkung von Kohlehydraten auf die LeistungsfÄhigkeit und die energieliefernden Substrate im Blut bei langwÄhrender Körperarbeit. Dtsch. Med. Wochenschr. 98, 1806–1811 (1973)Google Scholar
  12. Mellerowicz, H., Meller, W.: Training. Biologische und medizinische Grundlagen und Prinzipien des Trainings. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  13. Rasmussen, B., Klausen, K., Clausen, J. P., Trap-Jensen, J.: Pulmonary ventilation, blood gases, and blood pH after training of the arms or legs. J. Appl. Physiol. 38, 250–256 (1975)Google Scholar
  14. Röcker, L., Kusch, K. A., Stoboy, H.: Plasma volume, albumin and globulin concentration and their intravascular masses. Eur. J. Appl. Physiol. 36, 57–64 (1976)Google Scholar
  15. Severinghaus, J. W.: Blood gas calculator. J. Appl. Physiol. 21, 1108–1116 (1966)Google Scholar
  16. Shappell, S. D., Murray, J. A., Bellingham, A. J., Woodson, R. D., Detter, J. C. A., Lenfant, C.: Adaptation to exercise: role of hemoglobin affinity for oxygen and 2,3 diphosphoglycerate. J. Appl. Physiol. 30, 827–837 (1971)Google Scholar
  17. Siggaard-Andersen, O.: The acid-base status of the blood, 2nd ed. Copenhagen: Munksgaard 1964Google Scholar
  18. Skipka, W., Böning, D., Deck, K. W., Schenk, U.: Aldosterone excretion and renal function during and after two-hour physical exercise. Pflügers Arch., [Suppl.] 373 R 57 (1978)Google Scholar
  19. Sproule, B. J., Mitchell, G. H., Miller, W. F.: Cardiopulmonary physiological responses to heavy exercise in patients with anemia. J. Clin. Invest. 39, 378–388 (1960)Google Scholar
  20. Sundsfjord, J. A., Strömme, S. B., Aakvaag, A.: Plasma aldosterone (PA), plasma renin activity (PRA), and cortisol (PF) in exercise. In: Metabolic adaptation to physical exercise, Howald H., Poortmans, J. R. (eds.), pp. 308–314. Basel: BirkhÄuser 1975Google Scholar
  21. Tibes, U., Schweigart, U., Böning, D., Hemmer, B., Fotescu, D.: Exercise acidosis as cause of electrolyte changes in femoral venous blood of trained and untrained man. Pflügers Arch. 347, 145–159 (1974)Google Scholar
  22. Winer, B. J.: Statistical principles in experimental design. New York, London, Sydney: McGraw-Hill 1976Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • D. Böning
    • 1
  • W. Skipka
    • 1
  • P. Heedt
    • 1
  • W. Jenker
    • 1
  • U. Tibes
    • 1
  1. 1.Physiologisches InstitutDeutsche Sporthochschule Köln Carl-Diem-WegKöln 41Federal Republic of Germany

Personalised recommendations