Physiological and metabolic effects of a 25 km race in female athletes

  • G. Haralambie
  • L. Senser
  • R. Sierra-Chàvez


Nine female athletes were examined before and after a 25 km race (German championship). Their average running speed was 3.89 m/s. Postexercise weight loss was 1.60±0.58 kg or 2.87% of body weight, the mean rectal temperature increased by 1.04±0.52‡ C to 38.4±0.54‡ C. Leucocytes, but no other blood parameters (hemoglobin, hematocrit, erythrocytes, MCV) showed a marked rise after the race. Blood lactate rose from 1.86±0.34 to 4.97±1.19 mmol/l but hypoglycemia was not present in any of the athletes at the end of exercise. After the run serum enzymes showed lower increases than those observed in men for the same exercise duration. Serum sodium, chloride and potassium showed similar increases, inorganic phosphate higher increments than found in men. The comparatively high rise in free glycerol suggested a marked mobilization of lipid substrate, whereas the increment in serum of free fatty acids was lower than in male subjects after similar athletic events.

A lowering of neuromuscular excitability (m. vastus medialis quadricipitis) was found after the race but the changes were significant only for the fibers responding to longer durations of stimuli (0.3–30 ms).

Key words

Female atheltes 25 km race Substrates Electrolytes Serum enzymes Neuromuscular excitability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bass A, Vondra K, Rath R, Vitek V (1975) M. Quadriceps femoris of man, a muscle with an unusual enzyme activity pattern of energy supplying metabolism in mammals. Pflügers Arch 345: 249–255Google Scholar
  2. Berg A, Haralambie G (1978) Changes in serum creatine kinase and hexose phosphate isomerase activity with exercise duration. Eur J Appl Physiol 39: 191–201Google Scholar
  3. Berg A, Haralambie G (1979) VerÄnderungen verschiedener energieliefernder Substrate im Blut bei Ausdauerbelastungen von Frauen. Med Welt 18: 703–706Google Scholar
  4. Berg A, Keul J (1979) Energiestoffwechsel bei körperlicher Arbeit. Phlebol Proktol 8: 213–220Google Scholar
  5. Costill DL, Fink WJ, Getchell LH, Ivy JL, Witzmann FA (1979) Lipid metabolism in skeletal muscle of endurance-trained males and females. J Appl Physiol: Respir Environ Exerc Physiol 47: 787–791Google Scholar
  6. Davis JA, Vodak P, Wilmore JH, Vodak J, Kurtz P (1976) Anaerobic threshold and maximal aerobic power for three modes of exercise. J Appl Physiol 41: 544–550Google Scholar
  7. Drinkwater B (1973) Physiological responses of woman to exercis. In: Wilmore JH (eds) Exercise and sport sciences reviews, vol 1. Academic Press, New York, pp 125–153Google Scholar
  8. Elliot B, Wilkinson J (1963) The serum “α-hydroxybutyrate dehydrogenase” in diseases other than myocardial infarction. Clin Sci 24: 343–355Google Scholar
  9. Fischer E, Licht S (1971) Electrodiagnosis and electromyography. Waverly-Press, Baltimore, pp 66–112Google Scholar
  10. Götz A (1974) Einfache, radiale Immundiffusion (RID) zur quantitativen Plasmaproteinbestimmung. In: Englhardt A, Lommel H (eds) Serumproteine. Verlag Chemie, Weinheim, pp 15–25Google Scholar
  11. Haralambie G, Berg A (1976) Serum urea and amino acid nitrogen changes with exercise duration. Eur J Appl Physiol 36: 39–48Google Scholar
  12. Haralambie G (1978) StoffwechselverÄnderungen nach langdauernder körperlicher Belastung beim Menschen. Wiss Abt Fresenius KG, Bad HomburgGoogle Scholar
  13. Haralambie G, Berg A (1979) VerÄnderungen physiologischer und biochemischer Grö\en nach Ausdauerbelastung bei Frauen mit und ohne Kalziumsubstitution. Med Welt 30: 1233–1238Google Scholar
  14. Haralambie G (1979) Skeletal muscle enzyme activities in female subjects of various ages. Bull Eur Physiopathol Respir 15: 259–267Google Scholar
  15. Haralambie G, Senser L (1980) Metabolic changes in man during long-distance swimming. Eur J Appl Physiol 43: 115–125Google Scholar
  16. Israel S (1979) Die organismischen Grundlagen der geschlechtsspezifischen sportlichen LeistungsfÄhigkeit. Med Sport 19: 194–205Google Scholar
  17. Johnson RH, Walton JL, Krebs HA, Williamson DH (1969) Metabolic fuels during and after severe exercise in athletes and non-athletes. Lancet II: 452–455Google Scholar
  18. Kindermann W, Keul J (1977) Anaerobe Energiebereitstellung im Hochleistungssport. Hoffmann-Verlag, SchorndorfGoogle Scholar
  19. Knochel JP, Barcenas C, Cotton JR, Fuller TJ, Haller R, Carter NW (1978) Hypophosphatemia and Rhabdomyolysis. J Clin Invest 62: 1240–1246Google Scholar
  20. Komi PV, Rusko H, Vos J, Vihko V (1977) Anaerobic performance capacity in athletes. Acta Physiol Scand 100: 107–114Google Scholar
  21. Liesen PH (1977) Metabolische Adaptionen an akute und chronische Ausdauerbeanspruchungen. Habilitationsschrift, Deutsche Sporthochschule, KölnGoogle Scholar
  22. Lorenz R, Gerber G (1979) Harnstoff bei körperlichen Belastungen: VerÄnderungen der Synthese, der Blutkonzentration und der Ausscheidung. Med Sport 19: 240–248Google Scholar
  23. Mader A, Hollmann W (1977) Zur Bedeutung der StoffwechselleistungsfÄhigkeit des Eliteruderers im Training und Wettkampf. Beiheft zu Leistungssport 9: 8–62Google Scholar
  24. Méan P, von NiederhÄusern F (1966) La femme et le sport. Gynaecologia 161: 125–150Google Scholar
  25. Scheele K, Herzog W, Ritthaler G, Wirth A, Weicker H (1979) Metabolic adaptation to prolonged exercise. Eur J Appl Physiol 41: 101–108Google Scholar
  26. Scheibe J, Israel S, Buhl H, Köhler E (1979) Der Einflu\ extremer AusdauerlÄufe auf einzelne Organsysteme und Schlu\folgerungen für die sportmedizinische Tauglichkeitsuntersuchung. Med Sport 19: 137–140Google Scholar
  27. Scheibe J, Israel S, Keil E (1980) Physiologische Reaktionen der Frau auf eine extreme Ausdauerbelastung. Med Sport 20: 19–22Google Scholar
  28. Seliger V (1977) Frau und Sport. In: Hollmann W (Hrsg) Zentrale Themen der Sportmedizin, 2. Aufl. Springer, Berlin Heidelberg New York, S 232–250Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • G. Haralambie
    • 1
  • L. Senser
    • 1
  • R. Sierra-Chàvez
    • 1
  1. 1.Albert Ludwigs UniversitÄtFreiburg i. Br.Federal Republic of Germany

Personalised recommendations