Metabolic adaptation to prolonged exercise

  • K. Scheele
  • W. Herzog
  • G. Ritthaler
  • A. Wirth
  • H. Weicker
Article

Summary

A study was undertaken to evaluate and to examine the role of substrate supply in 50 healthy subjects after long distance events, such as 10 km, 25 km, and marathon races. The metabolic, variables of carbohydrate metabolism were greatest in 10-km runners, with the highest increase in glucose, lactate, and pyruvate, while in marathon runners only moderate changes were observed. Marathon competitors gave the greatest decrease in insulin concentration whereas glucagon and cortisol showed a contrary tendency. As for lipid concentrations, the most remarkable point was that after the marathon competition the best runners had the highest increase in free fatty acids; the longer the race, the higher were the Β-hydroxybutyrate and acetoacetate levels after the competition.

It is important to emphasize that the limiting factor up to 90 min duration is the competitor's ability to deplete the stores of glycogen. Beyond 90 min (or 25 km) the decrease in insulin, the rise in cortisol and the higher concentration of ketnne bodies found indicate a change in metabnlic response.

Key words

Prolonged exercise Hormones Lipolysis Carbohydrate metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlborg, G., Felig, P., Hagenfeldt, L., Hendler, R., Wahren, J.: Substrate turnover during prolonged exercise in man. J. Clin. Invest. 53, 1080–1090 (1974)Google Scholar
  2. Berger, M.: Untersuchungen zur Regulation des Glucosestoffwechsels der Skelettmuskulatur In: Habilitationsschrift, pp. 63–91. UniversitÄt Düsseldorf 1975Google Scholar
  3. Faloona, G. R., Unger, R. H.: Glucagon. In: Methods of hormone radioimmunoassay, pp. 317–327. New York, London: Academic Press 1974Google Scholar
  4. Goldstein, M. S., Mullick, V., Huddlestun, B., Levine, R.: Action of muscular work on tranfer of sugar across cell barriers: Comparison with the action of insulin. Am. J. Physiol. 173, 212–216 (1953)Google Scholar
  5. Hill, A. V.: The maximal work and mechanical efficiency of human muscles and their most economical speed. Am. J. Physiol. 56, 19 (1922)Google Scholar
  6. Hohorst, H. J.: L-(+)-Lactat-Bestimmung mit Lactat Dehydrogenase und NAD. In: Methoden der enzymatischen Analyse, Bd. II (H. U. Bergmeyer, ed.), pp. 1425–1429. Weinheim: Verlag Chemie 1970Google Scholar
  7. Hollmann, W., Hettinger, Th.: Ausdauer. In: Sportmedizin, Arbeits- und Trainingsgrundlagen (W. Hollmann, ed.), pp. 301–346. Stuttgart, New York: Schattauer 1975Google Scholar
  8. Holloszy, J. O., Bnoth, W., Winder, W, Fitts, R. H.: Biochemical adaptions in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 242, 2278–2282 (1967)Google Scholar
  9. Randle, P. J., Garland, P. B., Hales, C. N., Newsholme, E. A.: The glucose fatty acid cycle. Its role in insulin sensitivity and metabolic disturbance of diabetes mellitus. Lancet 1963 I, 785–789Google Scholar
  10. Randle, P. J.: Blood glucose homeostasis — glucose utilization. Nobel Symposia 13, 173–197 (1970)Google Scholar
  11. Rudermann, N. B., Toews, C. J., Shafrir, E.: Role of free fatty acids in glucose homeostasis. Arch. Intern. Med. 123, 299–313 (1969)Google Scholar
  12. Rudermann, N. E.: Muscle amino acid metabolism and gluconeogenesis. Ann. Rev. Med. 26, 245–258 (1975)Google Scholar
  13. Senger, H., Donath, R.: Zur Regulation der oxydativen Substratverwertung im Muskel bei erhöhtem ATP-Umsatz. Med. Sport 17, 391–401 (1977)Google Scholar
  14. Starr, J. I., Rubenstein, A. X.: Insulin, proinsulin and c-peptide. In: Methods of hormone radioimmunoassay. (B. M. Jaffe, H. R. Behrmann, eds.), pp. 289–311. New York, London: Academic Press 1974Google Scholar
  15. Vecsei, P.: Glucocorticoids: Cortisol, Corticosterone, and Compounds. In: Methods of hormone radioimmunoassay (P. Vecsei, ed.), pp. 393–412. New York, London: Academic Press 1974Google Scholar
  16. Weicker, H., Wirth, A., Spiel, M.: Influence of motoric activation on metabolic regulation and physical efficiency with diabetes mellitus. Inn. Med. 3, 423–429 (1976)Google Scholar
  17. Wirth, A., Eckhard, J., Weicker, H.: Automatic potentiometric titration and gas-liquid chromatography of underivated free fatty acids. Clin. Chim. Acta 71, 47–54 (1976)Google Scholar
  18. Young, D. R., Pelligra, R., Shapira, J., Adachi, R. R., Skrettingland, K.: Glucose oxidation and replacement during prolonged exercise in man. J. Appl. Physiol. 23, 734–741 (1967)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • K. Scheele
    • 1
    • 2
  • W. Herzog
    • 1
    • 2
  • G. Ritthaler
    • 1
    • 2
  • A. Wirth
    • 1
    • 2
  • H. Weicker
    • 1
    • 2
  1. 1.Institute of Pathophysiology and Sports MedicineUniversity of HeidelbergHeidelbergFederal Republic of Germany
  2. 2.Institute of Sports MedicineStuttgartFederal Republic of Germany
  3. 3.Stuttgart 50Federal Republic of Germany

Personalised recommendations