Advertisement

Effects of strength training and immobilization on human muscle fibres

  • J. D. MacDougall
  • G. C. B. Elder
  • D. G. Sale
  • J. R. Moroz
  • J. R. Sutton
Article

Summary

Seven healthy male subjects were studied under control conditions and following 5–6 months of heavy resistance training and 5–6 weeks of immobilization in elbow casts. Cross-sectional fibre areas and nuclei-to-fibre ratios were calculated from cryostat sections of needle biopsies taken from triceps brachii. Training resulted in a 98% increase in maximal elbow extension strength as measured by a Cybex dynamometer, while immobilization resulted in a 41% decrease in strength. Both fast twitch (FT) and slow twitch (ST) fibre areas increased significantly with training by 39% and 31%, respectively. Immobilization resulted in significant decreases in fibre area by 33% for FT and 25% for ST fibres. The observed nuclei-to-fibre ratio was 10% greater following the training programme. However, this change was non-significant. There was also a nonsignificant correlation between the magnitude of the changes in fibre size and the changes in maximal strength following either training or immobilization.

Key words

Fast and slow twitch fibres Weight training Hypertrophy Immobilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooke, M. H., Kaiser, K. K.: Three “myosin ATPase” systems: the nature of their pH lability and sulphdryl dependence. J. Histochem. 18, 670–672 (1970)Google Scholar
  2. Buller, A. J., Eccles, J. C., Eccles, R. M.: Interactions between motoneurons and muscles in respect to the characteristic speeds of their responses. J. Physiol. (Lond.) 150, 417–420 (1960)Google Scholar
  3. Burke, R. E., Kanda, K., Mayer, R. F.: The effect of chronic immobilization on defined motor units in cat medial gastrocnemius. Soc. Neurosci. 1, 763–769 (1975)Google Scholar
  4. Dubowitz, V., Brooke, M. H.: Muscle Biopsy: A Modern Approach. Chap. 5. London, Philadelphia, Toronto: Saunders 1973Google Scholar
  5. Edgerton, V. R., Barnard, R. J., Peter, J. B., Gillespie, C. A., Simpson, D. R.: Overloaded skeletal muscles of a nonhuman primate (Galago senegalensis). Exp. Neurol. 37, 322–339 (1972)Google Scholar
  6. Edgerton, V. R., Barnard, R. J., Peter, J. B., Maier, A., Simpson, D. R.: Properties of immobilized muscles of the Galago senegalensis. Exp. Neurol. 46, 115–131 (1975)Google Scholar
  7. Edgerton, V. R.: Neuromuscular adaptation to power and endurance work. Can. J. Appl. Sport. Sci. 1, 49–58 (1976)Google Scholar
  8. Edström, L.: Selective atrophy of red muscle fibres in the quadriceps in long-standing knee-joint dysfunction following injuries to the anterior cruciate ligament. Neurol. Sci. 114, 551–559 (1970)Google Scholar
  9. Edström, L., Ekblom, B.: Differences in sizes of red and white muscle fibres in vastus lateralis of musculus quadriceps femoris of normal individuals and athletes. Relation to physical performance. Scand. J. Clin. Lab. Invest. 30, 175–181 (1972)Google Scholar
  10. Edström, L., Nyström, B.: Histochemical types and sizes of fibres of normal human muscles. Acta. Neurol. Scand. 45, 257–269 (1969)Google Scholar
  11. Edström, L., Torlegård, K.: Area estimation of transversely sectioned muscle fibre. Z. Wiss. Mikrosk. 60, 166–179 (1969)Google Scholar
  12. Engel, W. K., Brooke, M. H.: Muscle biopsy as a clinical diagnostic aid. In: Neurological diagnostic techniques, Fields, W. S. (ed.), pp. 121–123. Springfield: Thomas 1966Google Scholar
  13. Goldberg, A. L.: Work-induced growth of skeletal muscle in normal and hypophysectomized rats. Am. J. Physiol. 213, 1193–1198 (1967)Google Scholar
  14. Goldberg, A. L., Etlinger, J. D., Goldspink, D. F., Jablecki, C.: Mechanism of work-induced hypertrophy of skeletal muscle. Med. Sci. Sports 7, 248–261 (1975)Google Scholar
  15. Gollnick, P. D., Armstrong, R. B., Saltin, B., Saubert, C. W., IV, Sembrowich, W. L., Shepherd, R. E.: Effect of training on enzyme activity and fibre composition of human skeletal muscle. J. Appl. Physiol. 34, 107–111 (1973a)Google Scholar
  16. Gollnick, P. D., Armstrong, R. B., Saubert, C. W., IV, Piehl, K., Saltin, B.: Enzyme activity and fibre composition in skeletal muscle of untrained and trained men. J. Appl. Physiol. 33, 312–319 (1972)Google Scholar
  17. Gollnick, P. D., Armstrong, R. B., Sembrowich, W. L., Shepherd, R. E., Saltin, B.: Glycogen depletion pattern in human skeletal muscle fibres after heavy exercise. J. Appl. Physiol. 34, 615–618 (1973b)Google Scholar
  18. Gonyea, W., Ericson, G. C., Bonde-Petersen, F.: Skeletal muscle fibre splitting induced by weight-lifting exercise in cats. Acta. Physiol. Scand. 99, 105–109 (1977)Google Scholar
  19. Gydikov, A., Kosarov, D.: Some features of different motor units in human biceps brachii. Pfluegers Arch. 347, 75–88 (1974)Google Scholar
  20. Karpati, G., Engle, W. K.: Correlative histochemical study of skeletal muscle after supra segmental denervation, peripheral nerve section, and skeletal fixation. Neurology (Minneap.) 18, 681–692 (1968)Google Scholar
  21. MacDougall, J. D., Ward, G. R., Sale, D. G., Sutton, J. R.: Biochemical adaptation of human skeletal muscle to heavy resistance training and immobilization. J. Appl. Physiol. 43, 700–703 (1977)Google Scholar
  22. Maier, A., Crockett, J. L., Simpson, D. R., Saubert, C. W., IV, Edgerton, V. R.: Properties of immobilized guinea pig hindlimb muscles. Am. J. Physiol. 231, 1520–1526 (1976)Google Scholar
  23. Maier, A., Eldred, E., Edgerton, V. R.: The effects on spindles of muscle atrophy and hypertrophy. Exp. Neurol. 37, 100–123 (1972)Google Scholar
  24. Milner-Brown, H. S., Stein, R. B., Lee, R. G.: Synchronization of human motor units: possible roles of exercise and supraspinal reflexes. Electroencephalogr. Clin. Neurophysiol. 38, 245–254 (1975)Google Scholar
  25. Novikoff, A. B., Schin, W., Dwcker, J.: Mitochondrial localization of oxidation enzymes: staining with two tetrazolium salts. J. Biophys. Biochem. Cytol. 47–61 (1961)Google Scholar
  26. Padykula, H. A., Herman, E.: The specificity of the histochemical method of adenosine triphosphatase. J. Histochem. Cytochem. 3, 170–195 (1955)Google Scholar
  27. Patel, A. N., Razyak, Z. A., Dastur, D. K.: Disuse atrophy of human skeletal muscles. Arch. Neurol. 20, 413–421 (1969)Google Scholar
  28. Prince, F. P., Hikida, R. S., Hagerman, F. C.: Human muscle fibre types in power lifters, distance runners, and untrained subjects. Pfluegers Arch. 363, 19–26 (1976)Google Scholar
  29. Roger, J. F., Craig, A. S.: Studies on the fine structure of muscle fibres and associated satellite cells in hypertrophic human deltoid muscle. Anat. Rec. 162, 483–500 (1968)Google Scholar
  30. Sargeant, A. J., Davies, C. T. M., Edwards, R. H. T., Maunder, C., Young, A.: Functional and structural changes after disuse of human muscle. Clin. Sci. Mol. Med. 52, 337–342 (1977)Google Scholar
  31. Stockdale, F., Holtzer, H.: DNA synthesis and myogenesis. Exp. Cell Res. 24, 508 (1961)Google Scholar
  32. Thorstensson, A.: Muscle strength, fibre types, and enzyme activities in man. Acta Physiol. Scand. [Suppl.] 443, 1–44 (1976)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. D. MacDougall
    • 1
  • G. C. B. Elder
    • 1
  • D. G. Sale
    • 1
  • J. R. Moroz
    • 1
  • J. R. Sutton
    • 1
  1. 1.Departments of Physical Education and MedicineMcMaster UniversityHamiltonCanada

Personalised recommendations