Molecular and Cellular Biochemistry

, Volume 48, Issue 3, pp 161–182 | Cite as

Mechanism of the anticoagulant action of heparin

  • I. Björk
  • U. Lindahl


The anticoagulant effect of heparin, a sulfated glycosaminoglycan produced by mast cells, requires the participation of the plasma protease inhibitor antithrombin, also called heparin cofactor. Antithrombin inhibits coagulation proteases by forming equimolar, stable complexes with the enzymes. The formation of these complexes involves the attack by the enzyme of a specific Arg-Ser bond in the carboxy-terminal region of the inhibitor. The complexes so formed are not dissociated by denaturing solvents, which indicates that a covalent bond may contribute to their stability. This bond may be an acyl bond between the active-site serine of the enzyme and the arginine of the cleaved reactive bond of the inhibitor. However, the native complexes dissociate slowly at near-neutral pH into free enzyme and a modified inhibitor, cleaved at the reactive bond. So, antithrombin apparently functions as a pseudo-substrate that traps the enzyme in a kinetically stable complex.

The reactions between antithrombin and coagulation proteases are slow in the absence of heparin. However, optimal amounts of heparin accelerate these reactions up to 2 000-fold, thereby efficiently preventing the formation of fibrin in blood. The accelerating effect, and thus the anticoagulant activity, is shown by only about one-third of the molecules in all heparin preparations, while the remaining molecules are almost inactive. The highly active molecules bind tightly to antithrombin, i.e. with a binding constant of slightly below 108 M−1 at physiological ionic strength, while the relatively inactive molecules bind about a thousand-fold more weakly. The binding of the high-affinity heparin to antithrombin is accompanied by a conformational change in the inhibitor that is detectable by spectroscopic and kinetic methods. This conformational change follows an initial, weak binding of heparin to antithrombin and causes the tight interaction between polysaccharide and inhibitor that is prerequisite to heparin anticoagulant activity. It has also been postulated that the conformational change leads to a more favourable exposure of the reactive site of antithrombin, thereby allowing the rapid interaction with the proteases.

Heparin also binds to the coagulation proteases. Recent studies indicate that this binding is weaker and less specific that the binding to antithrombin. Nevertheless, for some enzymes, thrombin, Factor IXa and Factor XIa, an interaction between heparin and the protease, in addition to that between the polysaccharide and antithrombin; apparently is involved in the accelerated inhibition of the enzymes. The effect of this interaction may be to approximate enzyme with inhibitor in an appropriate manner. However, the bulk of the evidence available indicates that binding of heparin to the protease alone cannot be responsible for the accelerating effect of the polysaccharide on the antithrombin-protease reaction.

Heparin acts as a catalyst in the antithrombin-protease reaction, i.e. it accelerates the reaction in non-stoichiometric amounts and is not consumed during the reaction. This ability can be explained by heparin being released from the antithrombin-protease complex for renewed binding to antithrombin, once the complex has been formed. Such a decresed affinity of heparin for the antithrombin complex, compared to the affinity for antithrombin alone, has been demonstrated.

The structure of the antithrombin-binding region in heparin has been investigated following the isolation of oligosaccharides with high affinity for antithrombin. The smallest such oligosaccharide, an octasaccharide, obtained after partial random depolymerization of heparin with nitrous acid, was found to contain a unique glucosamine-3-O-sulfate group, which could not be detected in other portions of the high affinity heparin molecule and which was absent in heparin with low affinity for antithrombin. The actual antithrombin-binding region within this octasaccharide molecule has been identified as a pentasaccharide sequence with he predominant structure: →N-acetyl-D-glucosamine(6-O-SO3)→D-glucoronic acid→D-glucosamine(N-SO3;3,6-di-O-SO3)→L-iduronic acid(2-O-SO3)→D-glucosamine(N-SO3;6-O-SO3). In addition to the 3-O-sulfate group, both N-sulfate groups as well as the 6-O-sulfate group of the N-acetylated glucosamine unit appear to be essential for the interaction with antithrombin. The remarkably constant structure of this sequence, as compared to other regions of the heparin molecule, suggests a strictly regulated mechanism of biosynthesis.

The ability of heparin to potentiate the inhibition of blood coagulation by antithrombin generally decreases with decreasing molecular weight of the polysaccharide. However, individual coagulation enzymes differ markedly with regard to this molecular-weight dependence. Oligosaccharides in the extreme low-molecular weight range, i.e. octa- to dodecasaccharides, with high affinity for antithrombin have high anti-Factor Xa-activity but are virtually unable to potentiate the inhibition of thrombin. Furthermore, such oligosaccharides are ineffective in preventing experimentally induced venous thrombosis in rabbits. Slightly larger oligosaccharides, containing 16 to 18 monosaccharide residues, show significant anti-thrombin as well as antithrombotic activities, yet have little effect on overall blood coagulation. These findings indicate that the affinity of a heparin fragment for antithrombin is not in itself a measure of the ability to prevent venous thrombo-genesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential as an antithrombotic agent.

The biological role of the interaction between heparin and antithrombin is unclear. In addition to a possible function in the regulation of hemostasis, endogenous heparin may serve as a regulator of extravascular serine proteinases. Mouse peritoneal macrophages have been found to synthesize all the enzymes that constitute the extrinsic pathway of coagulation. Moreover, tissue thromboplastin is produced by these cells in response to a functional interaction with activated T-lymphocytes. The inhibition of this extravascular coagulation system by heparin, released from mast cells, may be potentially important in modulating inflammatory reactions.


Heparin Oligosaccharide Antithrombin Sulfated Glycosaminoglycan Reactive Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McLean, J., 1916. Am. J. Physiol. 41: 250–257.Google Scholar
  2. 2.
    Howell, W. H. and Holt, E., 1918. Am. J. Physiol. 47: 328–341.Google Scholar
  3. 3.
    Charles, A. F. and Scott, D. A., 1933. J. Biol. Chem. 102: 431–435.Google Scholar
  4. 4.
    Yosisawa, Z., 1964. Biochim. Biophys. Res. Commun. 16: 336–341.Google Scholar
  5. 5.
    Horner, A. A., 1977. Fed. Proc. 36: 35–39.Google Scholar
  6. 6.
    Toledo, O. M. S. and Dietrich, C. P., 1977. Biochim. Biophys. Acta 498: 114–122.Google Scholar
  7. 7.
    Frommhagen, L. H., Fahrenbach, M. M., Brockman, J. B., Jr. and Stokstad, E. L. R., 1953. Proc. Soc. Exp. Biol. Med. 82: 280–283.Google Scholar
  8. 8.
    Cássaro, C. M. F. and Dietrich, C. P., 1977. J. Biol. Chem. 252: 2254–2261.Google Scholar
  9. 9.
    Jorpes, E., Holmgren, H. and Wilander, O., 1937. Zeitschr. Mikr.-Anat. Forsch. 42: 279–301.Google Scholar
  10. 10.
    Schiller, S. and Dorfman, A., 1959. Biochim. Biophys. Acta 31: 278–280.Google Scholar
  11. 11.
    Yurt, R. W., Leid, R. W., Jr., Austen, K. F. and Silbert, J. E., 1977. J. Biol. Chem. 252: 518–521.Google Scholar
  12. 12.
    Berlin, G. and Enerbäck, L., 1978. J. Histochem. & Cytochem. 26: 14–21.Google Scholar
  13. 13.
    Jaques, L. B. and Waters, E. T., 1941. J. Physiol. 99: 454–466.Google Scholar
  14. 14.
    Jacobsson, K.-G. and Lindahl, U., 1979. Thromb. Haemostas. 42: 84.Google Scholar
  15. 15.
    Howell, W. H., 1925. Am. J. Physiol. 71: 553–562.Google Scholar
  16. 16.
    Quick, A. J., 1938. Am. J. Physiol. 123: 712–719.Google Scholar
  17. 17.
    Brinkhous, K. M., Smith, H. P., Warner, E. D. and Seegers, W. H., 1939. Am. J. Physiol. 125: 683–687.Google Scholar
  18. 18.
    Seegers, W. H., Johnson, J. F. and Fall, C., 1954. Am. J. Physiol. 176: 97–103.Google Scholar
  19. 19.
    Monkhouse, F. C., France, E. S. and Seegers, W. H., 1955. Circ. Res. 3: 397–402.Google Scholar
  20. 20.
    Waugh, D. F. and Fitzgerald, M. A., 1956. Am. J. Physiol. 184: 627–638.Google Scholar
  21. 21.
    Blombäck, B., Blombäck, M. and Olsson, P., 1963. Thromb. Diath. Haemorrh. 9: 368–386.Google Scholar
  22. 22.
    Abildgaard, U., 1968. Scand. J. Clin. Lab. Invest. 21: 89–91.Google Scholar
  23. 23.
    Rosenberg, R. D. and Damus, P. S., 1973. J. Biol. Chem. 248: 6490–6505.Google Scholar
  24. 24.
    Rosenberg, R. D., 1977. Fed. Proc. 36: 10–18.Google Scholar
  25. 25.
    Barrowcliffe, T. W., Johnson, E. A. and Thomas, D., 1978. Br. Med. Bull. 34: 143–150.Google Scholar
  26. 26.
    Comper, W. D., 1981. Heparin (and Related Polysaccharides), Gordon & Breach, New York.Google Scholar
  27. 27.
    Jackson, C. M. and Nemerson, Y., 1980. Ann. Rev. Biochem. 49: 767–811.Google Scholar
  28. 28.
    Abildgaard, U., 1967. Scand. J. Clin. Lab. Invest. 19: 190–195.Google Scholar
  29. 29.
    Lane, J. L., Bird, P. and Rizza, C. R., 1975. Br. J. Haematol. 30: 103–115.Google Scholar
  30. 30.
    Abildgaard, U., 1979. In: The Physiological Inhibitors of Blood Coagulation and Fibrinolysis (Collen, D., Wiman, B. and Verstraete, M., eds.), pp. 31–33, Elsevier/North-Holland, Amsterdam.Google Scholar
  31. 31.
    Tollefsen, D. M. and Blank, M. K., 1981. J. Clin. Invest. 68: 589–596.Google Scholar
  32. 32.
    Yin, E. T., Wessler, S. and Stoll, P. J., 1971. J. Biol. Chem. 246: 3712–3719.Google Scholar
  33. 33.
    Damus, P. S., Hicks, M. and Rosenberg, R. D., 1973. Nature (London) 246: 355–357.Google Scholar
  34. 34.
    Rosenberg, J. S., McKenna, P. W. and Rosenberg, R. D., 1975. J. Biol. Chem. 250: 8883–8888.Google Scholar
  35. 35.
    Kurachi, K., Fujikawa, K., Schmer, G. and Davie, E. W., 1976. Biochemistry 15: 373–377.Google Scholar
  36. 36.
    Stead, N., Kaplan, A. and Rosenberg, R. D., 1976. J. Biol. Chem. 251: 6481–6488.Google Scholar
  37. 37.
    Highsmith, R. F. and Rosenberg, R. D., 1974. J. Biol. Chem. 249: 4335–4338.Google Scholar
  38. 38.
    Mahoney, W. C., Kurachi, K. and Hermodson, M. A., 1980. Eur. J. Biochem. 105: 545–552.Google Scholar
  39. 39.
    Jesty, J., 1978. Arch. Biochem. Biophys. 185: 165–173.Google Scholar
  40. 40.
    Marciniak, E., 1973. Br. J. Haematol. 24: 391–400.Google Scholar
  41. 41.
    Miletich, J. P., Jackson, C. M. and Majerus, P. W., 1978. J. Biol. Chem. 253: 6908–6913.Google Scholar
  42. 42.
    Miller-Andersson, M., Borg, H. and Andersson, L.-O., 1974. Thromb. Res. 5: 439–452.Google Scholar
  43. 43.
    Kurachi, K., Schmer, G., Hermodson, M. A., Teller, D. C. and Davie, E. W., 1976. Biochemistry 15: 368–373.Google Scholar
  44. 44.
    Nordenman, B., Nyström, C. and Björk, I., 1977. Eur. J. Biochem. 78: 195–203.Google Scholar
  45. 45.
    Furugren, B., Andersson, L.-O. and Einarsson, R., 1977. Arch. Biochem. Biophys. 178: 419–424.Google Scholar
  46. 46.
    Koide, T., 1979. J. Biochem. 86: 1841–1850.Google Scholar
  47. 47.
    Collen, D., Schetz, J., deCock, F., Holmer, E. and Verstraete, M., 1977. Eur. J. Clin. Invest. 7: 27–35.Google Scholar
  48. 48.
    Murano, G., Williams, L., Miller-Andersson, M., Aronson, D. L. and King, C., 1980. Thromb. Res. 18: 259–262.Google Scholar
  49. 49.
    Petersen, T. E., Dude k-Wosciechowska, G., Sottrup-Jensen, L. and Magnusson, S., 1979. In: The Physiological Inhibitors of Blood Coagulation and Fibrinolysis (Collen, D., Wiman, B. and Verstraete, M., eds.) pp. 43–54, Elsevier/North-Holland, Amsterdam.Google Scholar
  50. 50.
    Franzén, L. E., Svensson, S. and Larm, O., 1980. J. Biol. Chem. 255: 5090–5093.Google Scholar
  51. 51.
    Mizuochi, T., Fujii, J., Kurachi, K. and Kobata, A., 1980. Arch. Biochem. Biophys. 203: 458–465.Google Scholar
  52. 52.
    Carrell, R. W., Boswell, D. R., Brennan, S. O. and Owen, M. C., 1980. Biochem. Biophys. Res. Commun. 93: 399–402.Google Scholar
  53. 53.
    Hunt, L. T. and Dayhoff, M. O., 1980. Biochem. Biophys. Res. Commun. 95: 864–871.Google Scholar
  54. 54.
    Lindahl, U., 1976. In: MTP International Reviews of Science; Organic Chemistry, Series Two — Carbohydrate Chemistry (Aspinall, G. O., ed) Vol. 7, pp. 283–312, Butterworths, London.Google Scholar
  55. 55.
    Lindahl, U. and Höök, M., 1978. Ann. Rev. Biochem. 47: 385–417.Google Scholar
  56. 56.
    Rodén, L., 1980. In: The Biochemistry of Glycoproteins and Proteoglycans (Lennartz, W. J., ed.) pp. 267–371, Plenum, New York.Google Scholar
  57. 57.
    Lindahl, U., Höök, M., Bäckström, G., Jacobsson, I., Riesenfeld, J., Malmström, A., Rodén, L. and Feingold, D. S., 1977. Fed. Proc. 36: 19–24.Google Scholar
  58. 58.
    Jacobsson, I. and Lindahl, U., 1980. J. Biol. Chem. 255: 5094–5100.Google Scholar
  59. 59.
    Riesenfeld, J., Höök, M. and Lindahl, U., 1980. J. Biol. Chem. 255: 922–928.Google Scholar
  60. 60.
    Feingold, D. S., Rodén, L., Forsee, T., Jacobsson, I., Jensen, J., Lindahl, U., Malmström, A. and Prihar, H., 1981. In: Biology of Heparin (Lundblad, R. L., Brown, W. V., Mann, K.G. and Roberts, H.R., eds.) pp. 157–171, Elsevier/North-Holland, New York.Google Scholar
  61. 61.
    Robinson, H. C., Horner, A. A., Höök, M., Ögren, S. and Lindahl, U., 1978. J. Biol. Chem. 253: 6687–6693.Google Scholar
  62. 62.
    Ögren, S. and Lindahl, U., 1971. Biochem. J. 125: 1119–1129.Google Scholar
  63. 63.
    Horner, A. A., 1972. Proc. Natl. Acad. Sci. U.S.A. 69: 3469–3473.Google Scholar
  64. 64.
    Ögren, S. and Lindahl, U., 1975. J. Biol. Chem. 250: 2690–2697.Google Scholar
  65. 65.
    Young, E. and Horner, A. A., 1979. Biochem. J. 180: 587–596.Google Scholar
  66. 66.
    Horner, A. A. and Young, E., 1979. In: Glycoconjugates; Proceedings of the Fifth International Symposium (Schauer, R., Boer, P., Buddecke, E., Kramer, M. F., Vliegenthart, J. F. G. and Wiegandt, H., eds.) pp. 63–64, Thieme, Stuttgart.Google Scholar
  67. 67.
    Örgen, S. and Lindahl, U., 1976. Biochem. J. 154: 605–611.Google Scholar
  68. 68.
    Jesty, J., 1979. J. Biol. Chem. 254: 10044–10050.Google Scholar
  69. 69.
    Feinman, R. D., 1979. In: The Physiological Inhibitors of Blood Coagulation and Fibrinolysis (Collen, D., Wiman, B. and Verstraete, M., eds.) pp. 55–66, Elsevier/North-Holland, Amsterdam.Google Scholar
  70. 70.
    Danielsson, Å. and Björk, I., 1982. Biochem. J., (in press).Google Scholar
  71. 71.
    Villanueva, G. B. and Danishefsky, I., 1979. Biochemistry 18: 810–817.Google Scholar
  72. 72.
    Owen, W. G., 1975. Biochim. Biophys. Acta 405: 380–387.Google Scholar
  73. 73.
    Jesty, J., 1979. J. Biol. Chem. 254: 1044–1049.Google Scholar
  74. 74.
    Fish, W. W. and Björk, I., 1979. Eur. J. Biochem. 101: 31–38.Google Scholar
  75. 75.
    Longas, M. O. and Finlay, T. H., 1980. Biochem. J., 189: 481–489.Google Scholar
  76. 76.
    Björk, I., Jackson, C. M., Jörnvall, H., Lavine, K. K., Nordling, K. and Salsgiver, W. J., 1982. J. Biol. Chem. 257: 2406–2411.Google Scholar
  77. 77.
    Björk, I., Danielsson, Å., Fenton, J. W., II, and Jörnvall, H., 1981. FEBS Lett. 126: 257–260.Google Scholar
  78. 78.
    Jörnvall, H., Fish, W. W. and Björk, I., 1979. FEBS Lett. 106: 358–362.Google Scholar
  79. 79.
    Griffith, M. J. and Lundblad, R. L., 1981. Biochemistry 20: 105–110.Google Scholar
  80. 80.
    Danielsson, A. and Björk, I., 1980. FEBS Lett. 119: 241–244.Google Scholar
  81. 81.
    Stroud, R. M., Krieger, M., Koeppe, R. E., II, Kossiakoff, A. A. and Chambers, J. L., 1975. In: Proteases and Biological Control (Reich, E., Rifkin, D. B. and Shaw, E., eds.) Cold Spring Harbor Conference on Cell Proliferation, Vol. 2, pp. 13–32, Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  82. 82.
    Walsh, C., 1979. Ezymatic Reaction Mechanisms. pp. 67–71, 94–97, Freeman, San Francisco.Google Scholar
  83. 83.
    Wallgren, P., Nordling, K. and Björk, I., 1981. Eur. J. Biochem. 116: 493–496.Google Scholar
  84. 84.
    Fish, W. W., Orre, K. and Björk, I., 1979. FEBS Lett. 98: 103–106.Google Scholar
  85. 85.
    Björk, I. and Fish, W.W., 1982. J. Biol. Chem. (in press).Google Scholar
  86. 86.
    Villanueva, G. B. and Danishefsky, I., 1977. Biochem. Biophys. Res. Commun. 74: 803–809.Google Scholar
  87. 87.
    Einarsson, R. and Andersson, L.-O., 1977. Biochim. Biophys. Acta 490: 104–111.Google Scholar
  88. 88.
    Einarsson, R., 1976. Biochim. Biophys. Acta 446: 124–133.Google Scholar
  89. 89.
    Piepkorn, M. W., Lagunoff, D. and Schmer, G., 1978. Biochem. Biophys. Res. Commun. 85: 851–856.Google Scholar
  90. 90.
    Piepkorn, M. W., Lagunoff, D. and Schmer, G., 1980. Arch. Biochem. Biophys. 205: 315–322.Google Scholar
  91. 91.
    Markwardt, F. and Walsman, P., 1959. Hoppe-Seylers Z. Physiol. Chem. 317: 64–77.Google Scholar
  92. 92.
    Gitel, S. N., 1975. In: Heparin. Structure, Function and Clinical Implications (Bradshaw, R. Å. and Wessler, S., eds.) pp. 243–247, Plenum Press, New York.Google Scholar
  93. 93.
    Björk, I. and Nordenman, B., 1976. Eur. J. Biochem. 68: 507–511.Google Scholar
  94. 94.
    Kowalski, S. and Finlay, T. H., 1979. Thromb. Res. 14: 387–397.Google Scholar
  95. 95.
    Carlström, A.-S., Liedén, K. and Björk, I., 1977. Thromb. Res. 11: 785–797.Google Scholar
  96. 96.
    Andersson, L.-O., Engman, L. and Henningsson, E., 1977. J. Immunol. Methods 14: 271–281.Google Scholar
  97. 97.
    Jordan, R., Beeler, D. and Rosenberg, R. D., 1979. J. Biol. Chem. 254: 2902–2913.Google Scholar
  98. 98.
    Lam, L. H., Silbert, J. E. and Rosenberg, R. D., 1976. Biochem. Biophys. Res. Commun. 69: 570–577.Google Scholar
  99. 99.
    Höök, M., Björk, I., Hopwood, J. and Lindahl, U., 1976. FEBS Lett. 66: 90–93.Google Scholar
  100. 100.
    Andersson, L.-O., Barrowcliffe, T. W., Holmer, E., Johnson, E. A. and Sims, G. E. C., 1976. Thromb. Res. 9: 575–583.Google Scholar
  101. 101.
    Nordenman, B. and Björk, I., 1978. Biochemistry 17: 3339–3344.Google Scholar
  102. 102.
    Nordenman, B., Danielsson, Å. and Björk, I., 1978. Eur. J. Biochem. 90: 1–6.Google Scholar
  103. 103.
    Danielsson, Å. and Björk, I., 1978. Eur. J. Biochem. 90: 7–12.Google Scholar
  104. 104.
    Rosenberg, R. D., Jordan, R. E., Favreau, L. V. and Lam, L. H., 1979. Biochem. Biophys. Res. Commun. 86: 1319–1324.Google Scholar
  105. 105.
    Danielsson, Å. and Björk, I., 1981. Biochem. J. 193: 427–433.Google Scholar
  106. 106.
    Radoff, S. and Danishefsky, I., 1981. Thromb. Res. 22: 353–365.Google Scholar
  107. 107.
    Nordenman, B. and Björk, I., 1981. Biochim. Biophys. Acta 672: 227–238.Google Scholar
  108. 108.
    Björk, I. and Nordling, K., 1980. Eur. J. Biochem. 102: 497–502.Google Scholar
  109. 109.
    Blackburn, M. N. and Sibley, C. C., 1980. J. Biol. Chem. 255: 824–826.Google Scholar
  110. 110.
    Villanueva, G. B., Perret, V. and Danishefsky, I., 1980. Arch. Biochem. Biophys. 203: 453–457.Google Scholar
  111. 111.
    Longas, M. O., Ferguson, W. S. and Finlay, T. H., 1980. J. Biol. Chem. 255: 3436–3441.Google Scholar
  112. 112.
    Finlay, T. H. and Ferguson, W. S., 1981. Thromb. Haemostas. 46: 81Google Scholar
  113. 113.
    Olson, S. T. and Shore, J. D., 1981. J. Biol. Chem. 256: 11065–11072.Google Scholar
  114. 114.
    Olson, S. T., Srinivasan, K. R., Björk, I. and Shore, J. D., 1981. J. Biol. Chem. 256: 11073–11079.Google Scholar
  115. 115.
    Rosenberg, R. D., Armand, G. and Lam, L., 1978. Proc. Natl. Acad. Sci. U.S.A. 75: 3065–3069.Google Scholar
  116. 116.
    Lindahl, U., Bäckström, G., Höök, M., Thunberg, L., Fransson, L.-Å. and Linker, A., 1979. Proc. Natl. Acad. Sci. U.S.A. 76: 3198–3202.Google Scholar
  117. 117.
    Rosenberg, R. D. and Lam, L., 1979. Proc. Natl. Acad. Sci. U.S.A. 76: 1218–1222.Google Scholar
  118. 118.
    Hopwood, J., Höök, M., Linker, Å. and Lindahl, U., 1976. FEBS Lett. 69: 51–54.Google Scholar
  119. 119.
    Thunberg, L., Bäckström, G., Grundberg, H., Riesenfeld, J. and Lindahl, U., 1980. FEBS Lett. 117: 203–206.Google Scholar
  120. 120.
    Ototani, N. and Yosisawa, Z., 1981. J. Biochem. 90: 1553–1556.Google Scholar
  121. 121.
    Casu, B., Oreste, P., Torri, G., Zopetti, G., Choay, J., Lormeau, J.-C. and Petitou, 1981. Biochem. J. 197: 599–609.Google Scholar
  122. 122.
    Choay, J., Lormeau, J.-C., Petitou, M., Sinaÿ, P., Casu, B., Oreste, P., Torri, G. and Gatti, G., 1980. Thromb. Res. 18: 573–578.Google Scholar
  123. 123.
    Leder, I. G., 1980. Biochem. Biophys. Res. Commun. 94: 1183–1189.Google Scholar
  124. 124.
    Lindahl, U., Bäckström, G., Thunberg, L. and Leder, I. G., 1980. Proc. Natl. Acad. Sci. U.S.A. 77: 6551–6555.Google Scholar
  125. 125.
    Meyer, B., Thunberg, L., Lindahl, U., Larm, O. and Leder, I. G., 1981. Carbohyd. Res. 88: C1-C4.Google Scholar
  126. 126.
    Riesenfeld, J., Thunberg, L., Höök, M. and Lindahl, U., 1981. J. Biol. Chem. 256: 2389–2394.Google Scholar
  127. 127.
    Thunberg, L., Bäckström, G. and Lindahl, U., 1982. Carbohyd. Res. 100: 393–410.Google Scholar
  128. 128.
    Gentry, P. W. and Alexander, B., 1973. Biochem. Biophys. Res. Commun. 50: 500–509.Google Scholar
  129. 129.
    Machovich, R., Blásko, G. and Pálos, L. A., 1975. Biochim. Biophys. Acta 379: 193–200.Google Scholar
  130. 130.
    Danishefsky, I., Tzeng, F., Ahrens, M. and Klein, S., 1976. Thromb. Res. 8: 131–140.Google Scholar
  131. 131.
    Nordenman, B. and Björk, I., 1977. Thromb. Res. 11: 799–808.Google Scholar
  132. 132.
    Nordenman, B. and Björk, I., 1978. Thromb. Res. 12: 755–765.Google Scholar
  133. 133.
    Holmer, E., Söderström, G. and Andersson, L.-O., 1979. Eur. J. Biochem. 93: 1–5.Google Scholar
  134. 134.
    Longas, M. O., Ferguson, W. S. and Finlay, T. H., 1980. Arch. Biochem. Biophys. 200: 595–602.Google Scholar
  135. 135.
    Griffith, M. J., Kingdon, H. S. and Lundblad, R. L., 1978. Biochem. Biophys. Res. Commun. 83: 1198–1205.Google Scholar
  136. 136.
    Nordenman, B. and Björk, I., 1980. Thromb. Res. 19: 711–718.Google Scholar
  137. 137.
    Li, E. H. H., Orton, C. and Feinman, R. D., 1974. Biochemistry 13: 5012–5017.Google Scholar
  138. 138.
    Griffith, M. J., Kingdon, H. S. and Lundblad, R. L., 1979. Arch. Biochem. Biophys. 195: 378–384.Google Scholar
  139. 139.
    Smith, G. F. and Sundboom, J. L., 1981. Thromb. Res. 22: 103–114.Google Scholar
  140. 140.
    Smith, G. F., 1977. Biochem. Biophys. Res. Commun. 77: 111–117.Google Scholar
  141. 141.
    Hatton, M. W. C. and Regoeczi, E., 1977. Thromb. Res. 10: 645–660.Google Scholar
  142. 142.
    Bartl, K., 1978. Thromb. Res. 13: 1141–1142.Google Scholar
  143. 143.
    Griffith, M. J., Kingdon, H. S. and Lundblad, R. L., 1979. Biochem. Biophys. Res. Commun. 87: 686–692.Google Scholar
  144. 144.
    Jordan, R. E., Oosta, G. M., Gardner, W. T. and Rosenberg, R. D., 1980. J. Biol. Chem. 255: 10073–10080.Google Scholar
  145. 145.
    Smith, G. F. and Craft, T. J., 1976. Biochem. Biophys. Res. Commun. 71: 738–745.Google Scholar
  146. 146.
    Stürzebecher, J. and Markwardt, F., 1977. Thromb. Res. 11: 835–846.Google Scholar
  147. 147.
    Griffith, M. J., 1979. J. Biol. Chem. 254: 3401–3406.Google Scholar
  148. 148.
    Laurent, T. C., Tengblad, A., Thunberg, L., Höök, M. and Lindahl, U., 1978. Biochem. J. 175: 691–701.Google Scholar
  149. 149.
    Pomerantz, M. W. and Owen, W. G., 1978. Biochim. Biophys. Acta 535: 66–77.Google Scholar
  150. 150.
    Machovich, R. and Arányi, P., 1978. Biochem. J. 173: 869–875.Google Scholar
  151. 151.
    Li, E. H. H., Fenton, J. W., II, and Feinman, R., 1976. Arch. Biochem. Biophys. 175: 153–159.Google Scholar
  152. 152.
    Jordan, R. E., Oosta, G. M., Gardner, W. T. and Rosenberg, R. D., 1980. J. Biol. Chem. 255: 10081–10090.Google Scholar
  153. 153.
    Machovich, R., 1975. Biochim. Biophys. Acta 412: 13–17.Google Scholar
  154. 154.
    Machovich, R., Staub, M. and Patthy, L., 1978. Eur. J. Biochem. 83: 473–477.Google Scholar
  155. 155.
    Machovich, R., Regoeczi, E. and Hatton, M. W. C., 1980. Thromb. Res. 17: 383–391.Google Scholar
  156. 156.
    Oosta, G. M., Gardner, W. T., Beeler, D. L. and Rosenberg, R. D., 1981. Proc. Natl. Acad. Sci. U.S.A. 78: 829–833.Google Scholar
  157. 157.
    Holmer, E., Lindahl, U., Bäckström, G., Thunberg, L., Sandberg, H., Söderström, G. and Andersson, L.-O., 1980. Thromb. Res. 18: 861–869.Google Scholar
  158. 158.
    Thunberg, L., Lindahl, U., Tengblad, A., Laurent, T. C. and Jackson, C. M., 1979. Biochem. J. 181: 241–243.Google Scholar
  159. 159.
    Holmer, E., Kurachi, K. and Söderström, G., 1981. Biochem. J. 193: 395–400.Google Scholar
  160. 160.
    Yin, E. T., Wessler, S. and Stoll, P. J., 1971. J. Biol. Chem. 246: 3703–3711.Google Scholar
  161. 161.
    Kakkar, V. V., Field, E. S., Nicolaides, A. N., Flute, P. T., Wessler, S. and Yin, E. T., 1971. Lancet 2: 669–671.Google Scholar
  162. 162.
    Wessler, S., 1974. Thromb. Diathes. Haemorrh. 33: 81–86.Google Scholar
  163. 163.
    Gitel, S. N., Stephenson, R. C. and Wessler, S., 1977. Proc. Natl. Acad. Sci. U.S.A. 74: 3028–3032.Google Scholar
  164. 164.
    Thomas, D. P., Merton, R. E., Lewis, W. E. and Barrowcliffe, T. W., 1981. Thromb. Haemostas. 45: 214–218.Google Scholar
  165. 165.
    Carter, C. J., Kelton, J. G., Hirsch, J. and Gent, M., 1981. Thromb. Res. 21: 169–174.Google Scholar
  166. 166.
    Thomas, D. P., Barrowcliffe, T. W., Lindahl, U., Thunberg, L., Merton, R. E., Hiller, K. F. and Eggleton, C. A., 1981. Thromb. Haemostas 46: 185.Google Scholar
  167. 167.
    Holmer, E., Mattsson, C., Nilsson, S., Söderström, G. and Svahn, C.-M., 1981. Thromb. Haemostas. 46: 117.Google Scholar
  168. 168.
    Glimelius, B., Busch, C. and Höök, M., 1978. Thromb. Res. 12: 773–782.Google Scholar
  169. 169.
    Höök, M., Lindahl, U., Hallén, Å. and Bäckström, G., 1975. J. Biol. Chem. 250: 6065–6071.Google Scholar
  170. 170.
    Thunberg, L., Bäckström, G., Wasteson, Å. Robinson, H. C., Ögren, S. and Lindahl, U., 1982. J. Biol. Chem., (in press).Google Scholar
  171. 171.
    Seljelid, R., Bäckström, G. and Lindahl, U., 1980. Exp. Cell. Res. 129: 478–481.Google Scholar
  172. 172.
    Østerud, B., Lindahl, U. and Seljelid, R., 1980. FEBS Lett. 120: 41–43.Google Scholar
  173. 173.
    Østerud, B., Bögwald, J., Lindahl, U. and Seljelid, R., 1981. FEBS Lett. 127: 154–156.Google Scholar
  174. 174.
    Levy, G. A. and Edgington, T. S., 1980. J. Exp. Med. 151: 1232–1244.Google Scholar
  175. 175.
    Geczy, C. L. and Hopper, K. E., 1981. J. Immunol. 126: 1059–1065.Google Scholar
  176. 176.
    Lindahl, U., Kolset, S.O., Bögwald, J., Østerud, B. and Seljelid, R., 1982. Biochem. j., (in press).Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1982

Authors and Affiliations

  • I. Björk
    • 1
  • U. Lindahl
    • 1
  1. 1.Dept. of Medical and Physiological Chemistry, College of Veterinary MedicineSwedish University of Agricultural Sciences, The Biomedical CenterUppsalaSweden

Personalised recommendations