, Volume 45, Issue 3, pp 243–254 | Cite as

Excitation-mediating and inhibition-mediating dopamine-receptors: A new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data

  • Alexander R. Cools
  • J. M. Van Rossum
Laboratory Studies


A great number of earlier reported experimental data dealing with the role of dopamine in dopamine-loaded structures within the mammalian brain have raised questions concerning the concept of dopamine as an inhibitory agent acting on one type of receptor. A critical review of the anatomical, histochemical, electrophysiological, pharmacological and functional studies reveals that the dopamine-loaded structures are marked by an internal differentiation at various levels. It is attempted to demonstrate that this is due to a heterogeneous distribution of two distinct types of dopamine-receptors, each characterized by their own properties: DAe- and DAi-receptors. Furthermore, the experimental and clinical. implications are discussed in view of the hypothesis that balance between both types of receptors is essential for normal psychomotor functioning.

Key words

Excitation Inhibition Dopamine-receptors Neuroleptics Ergot alkaloids Psychosis Dyskinesias 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albe-Fessard, D., Raieva, S., Santiago, W.: Sur les relations entre la substance noire et le royau caudé. J. Physiol. (Paris) 59, 324–325 (1967)Google Scholar
  2. Andén, N. E., Dahlström, K., Fuxe, K., Larsson, K., Olsen, L., Ungerstedt, U.: Ascending monoamine neurons to the telencephalon and diencephalon. Acta physiol. scand. 67, 313–316 (1966)Google Scholar
  3. Andén, N. E., Fuxe, K., Hökfelt, T., Rubenson, A.: Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19, 627–629 (1967)Google Scholar
  4. Arbuthnott, G. W., Crow, T. J., Fuxe, K., Olson, L., Ungerstedt, U.: Depletion of catecholamines in vivo induced by electrical stimulation of central monoamine pathways. Brain Res. 24, 471–483 (1970)Google Scholar
  5. Ayd, F. J.: Persistent dyskinesia: a neurologic complication of major tranquillizers. Med. Sci. 18, 32–40 (1967)Google Scholar
  6. Baker, W. W., Connor, J. D., Rossi, G. V., Lalley, P. M.: Production of tremor by intracaudate cholinergic agents and its suppression by locally applied administered catecholamines. In: Progress in neuro-genetics, vol.1, A. Barbeau and J. R. Brunette, eds., pp. 390–403. Amsterdam: Excerpta Medica Foundation 1969Google Scholar
  7. Barbeau, A., McDowell, D. H.: l-Dopa and parkinsonism. Philadelphia: F. A. Davis 1969Google Scholar
  8. Barrett, R. E., Yahr, M. D., Duvoisin, R. C.: Torsion dystonia and spasmodic torticollis: results of treatment with l-Dopa. Neurology (Minneap.) 20, 107–113 (1970)Google Scholar
  9. Bartholini, G., Burkard, W. P., Pletscher, A., Bates, H. M.: Increase of cerebral catecholamines caused by 3,4-dihydroxyphenylalamine after inhibition of peripheral decarboxylase. Nature (Lond.) 215, 852–853 (1967)Google Scholar
  10. Bartholini, G., Pletscher, A.: Cerebral accumulation and metabolism of C14-DOPA after selective inhibition of peripheral decarboxylase. J. Pharmacol. exp. Ther. 161, 14–20 (1968)Google Scholar
  11. Besson, M. J., Cheramy, A., Feltz, P., Glowinski, J.: Release of newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat. Proc. nat. Acad. Sci. (Wash.) 62, 741–748 (1969)Google Scholar
  12. Besson, M., Cheramy, A., Feltz, P., Glowinski, J.: Dopamine: spontaneous and drug-induced release from the caudate nucleus in the cat. Brain Res. 32, 407–424 (1971)Google Scholar
  13. Bloom, F. E., Costa, E., Salmoiraghi, G. C.: Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by micro-electrophoresis. J. Pharmacol. exp. Ther. 150, 244–252 (1965)Google Scholar
  14. Buchwald, N. A., Rakic, L., Wyers, E. J., Hull, C., Heuser, G.: Integration of visual impulses and the “caudate loop”. Exp. Neurol. 5, 1–20 (1962)Google Scholar
  15. Butcher, L., Engel, J., Fuxe, K.: l-Dopa induced changes in central monoamine neurons after peripheral decarboxylase inhibition. J. Pharm. Pharmacol. 22, 313–316 (1970)Google Scholar
  16. Butcher, L. L., Bryan, G. K.: Effects of intrastriatal dopamine application on precise motor response. In: Fifth International Congress of Pharmacology, pp. 203, San Francisco 1972Google Scholar
  17. Calne, D. B.: Parkinsonism: physiology, pharmacology and treatment. London: Edward Arnold 1970Google Scholar
  18. Calne, D. B.: Piribedil in Parkinsonism. Advanc. Neurol. 5, 325 (1974)Google Scholar
  19. Carlsson, A., Lindqvist, M., Dahlström, A., Fuxe, K., Masuoka, D.: Effects of the amphetamine group on intraneuronal brain amines in vivo and in vitro. J. Pharm. Pharmacol. 17, 521–524 (1965)Google Scholar
  20. Christiansen, J., Squires, R. F.: Antagonistic effects of apomorphine and haloperidol on rat striatal synaptosomal tyrosine hydroxylase. J. Pharm. Pharmacol. 26, 367–369 (1974a)Google Scholar
  21. Christiansen, J., Squires, R. F.: Antagonistic effects of neuroleptics and apomorphine on synaptosomal tyrosine hydroxylase in vitro. J. Pharm. Pharmacol. (1974b)Google Scholar
  22. Coleman, M.: Preliminary remarks on the l-Dopa therapy of dystonia. Neurology (Minneap.) 20, 114–121 (1970)Google Scholar
  23. Connor, J. D.: Caudate units responses to nigral stimuli: evidence for a possible nigro-neostriatal pathway. Science 160, 899–900 (1968)Google Scholar
  24. Connor, J. D.: Caudate nucleus neurones: correlation of the effects of substantia nigra stimulation with iontophoretic dopamine. J. Physiol. (Lond.) 208, 691–703 (1970)Google Scholar
  25. Connor, J. D., Rossi, G. V., Baker, W. W.: Antagonism of intracaudate carbachol tremor by local injection of catecholamines. J. Pharmacol. exp. Ther. 155, 545–551 (1967)Google Scholar
  26. Cools, A. R.: The function of dopamine and its antagonism in the caudate nucleus of cats in relation to the stereotyped behaviour. Arch. int. Pharmacodyn. 194, 259–269 (1971)Google Scholar
  27. Cools, A. R.: The caudate nucleus and neurochemical control of behaviour. Nijmegen: Drukkerij Brakkenstein 1973Google Scholar
  28. Cools, A. R., Janssen, H. J., Struyker Boudier, H. A. J., van Rossum, J. M.: Interaction between antipsychotic drugs and catecholamines receptors. In: Wenner-Grenn Center International Symposium Series. Pergamon Press (in press, 1975a)Google Scholar
  29. Cools, A. R., van Rossum, J. M.: Caudate dopamine and stereotyped behaviour of cats. Arch. int. Pharmacodyn. 187, 163–173 (1970)Google Scholar
  30. Cools, A. R., Hendriks, G., Korten, J.: The acetylcholinedopamine balance in the basal ganglia of rhesus monkeys and its role in dynamic, dystonic, dyskinetic and epileptoid motor activities. J. Neurotransmission 36, 91–105 (1975b)Google Scholar
  31. Corrodi, H., Fuxe, K., Ungerstedt, U.: Evidence for a new type of dopamine receptor stimulating agent. J. Pharm. Pharmacol. 23, 989–991 (1971)Google Scholar
  32. Corrodi, H., Farnebo, L. O., Fuxe, K., Hamberger, B., Ungerstedt, U.: ET-495 and brain catecholamine mechanisms: evidence for stimulation of dopamine receptors. Europ. J. Pharmacol. 20, 195–204 (1972)Google Scholar
  33. Corrodi, H., Fuxe, K., Hökfelt, T., Lidbrink, P., Ungerstedt, U.: Effect of ergot drugs on central catecholamine neurons: evidence for a stimulation of central dopamine neurons. J. Pharm. Pharmacol. 25, 409–411 (1973)Google Scholar
  34. Costall, B., Naylor, R. Y., Olley, J. E.: Stereotyped and anticataleptic activities of amphetamine after intracerebral injections. Europ. J. Pharmacol. 18, 83–94 (1972a)Google Scholar
  35. Costall, B., Naylor, R. J.: On the mode of action of apomorphine. Europ. J. Pharmacol. 21, 350–361 (1973a)Google Scholar
  36. Costall, B., Naylor, R. J.: The site and mode of action of ET-495 for the mediation of stereotyped behaviour in the rat. Naunyn-Schmiedeberg's Arch. Pharmacol. 278, 117–133 (1973b)Google Scholar
  37. Cotzias, G. C., Papavasiliou, P. S., Fehling, C., Kaufman, B., Mena, I.: Similarities between neurologic effects of l-Dopa and of apomorphine. New Engl. J. Med. 282, 31–33 (1970)Google Scholar
  38. Cotzias, G. C., Mena, I., Papavasiliou, P. S., Mendez, J.: Unexpected findings with apomorphine and their possible consequences. Advanc. Neurol. 5, 295–299 (1974)Google Scholar
  39. Crane, G. E.: Dyskinesia and neuroleptics. Arch. gen. Psychiol. 19, 700–703 (1968a)Google Scholar
  40. Crane, G. L.: Tardive dyskinesias in patients treated with major neuroleptics: a review of the literature. Amer. J. Psychiat. 124, 40–68 (1968b)Google Scholar
  41. Coyle, J. T., Snyder, S. H.: Catecholamine uptake by synaptosones in homogenates of rat brain: stereospecificity in different areas. J. Pharmacol. exp. Ther. 170, 221–231 (1969)Google Scholar
  42. Düby, S. F., Cotzias, G. C., Papavasiliou, P. S., Lawrence, W. F.: Injected apomorphine and orally administered levodopa in Parkinsonism. Arch. Neurol. (Chic.) 27, 474–480 (1972)Google Scholar
  43. Ernst, A. M.: Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia (Berl.) 10, 316–323 (1967)Google Scholar
  44. Ernst, A. M., Smelik, P. G.: Site of action of dopamine and apomorphine on compulsive gnawing behaviour in rats. Experientia (Basel) 22, 837–838 (1966)Google Scholar
  45. Farnebo, L., Fuxe, K., Goldstein, M., Hamberger, B., Ungerstedt, U.: Dopamine and noradrenaline releasing action of amantadine in the central and peripheral nervous system: a possible mode of action in Parkinson's disease. Europ. J. Pharmacol. 16, 27–38 (1971)Google Scholar
  46. Faurbye, E.: The structural and biochemical bases of movement disorders in treatment with neuroleptic drugs and in extrapyramidol diseases. Comprehens. Psychiat. 11, 205–225 (1970)Google Scholar
  47. Feltz, P.: Relation nigro-striatale: essai de differentiation des excitations et inhibitions par micro-iontophorése de dopamine. J. Physiol. (Paris) 62, 151 (1970a)Google Scholar
  48. Feltz, P.: Dopamine, amino-acids and caudate unitary responses to nigral stimulation. J. Physiol. (Lond.) 205, 8–9 P (1970b)Google Scholar
  49. Feltz, P.: La réponse cellulaire d'excitation nigro-striatale: tests pharmacologiques par perfusion de la surface du noyeau caudé. J. Physiol. (Paris) 62, 374 (1970c)Google Scholar
  50. Feltz, P.: Monoamines and the excitatory nigro-striatal linkage. Experientia (Basel) 27, 2 (1971a)Google Scholar
  51. Feltz, P.: Sensitivity to haloperidol of caudate neurons excited by nigral stimulation. Europ. J. Pharmacol. 14, 360–364 (1971b)Google Scholar
  52. Feltz, P.: Problems raised by the electrophisiological determination of nigro-striatal inhibitions related to a dopaminergic transmission. J. Pharmacol. (Paris) 5 Suppl. 1, 57 (1974)Google Scholar
  53. Feltz, P., Albe-Fessard, D.: A study of an ascending nigrocaudate pathway. Electroenceph. clin. Neurophysiol. 33, 179–193 (1972)Google Scholar
  54. Feltz, P., De Champlain, J.: Persistence of caudate unitary responses to nigral stimulation after destruction and functional impairment of the striatal dopaminergic terminals. Brain Res. 43, 595–600 (1972a)Google Scholar
  55. Feltz, P., De Champlain, J.: Enhanced sensitivity of caudate neurones to micro-iontophoretic injections of dopamine in 6-hydroxydopamine treated cats. Brain Res. 43, 601–605 (1972b)Google Scholar
  56. Feltz, P., McKenzie, J. S.: Properties of caudate unitary responses to repetitive nigral stimulation. Brain Res. 13, 612–616 (1969)Google Scholar
  57. Fibiger, H. C., Pudritz, R. E., McGeer, P. L., McGeer, E. G.: Axonal transport in nigro-striatal neurones. Nature (Lond.) 237, 177–179 (1972)Google Scholar
  58. Fog, R., Pakkenberg, H.: Combined nitoman-pimozide treatment of Huntington's chorea and other hyperkinetic syndromes. Acta neurol. scand. 46, 249–251 (1970)Google Scholar
  59. Fog, R., Pakkenberg, H.: Behavioural effects of dopamine and p-hydroxyamphetamine injected into the corpus striatum of rats. Exp. Neurol. 31, 75–86 (1971)Google Scholar
  60. Frigyesi, T. L., Purpura, D.: Electrophysiological analysis of reciprocal caudato-nigral relations. Brain Res. 6, 440–456 (1967)Google Scholar
  61. Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. Z. Zellforsch. 65, 37–85 (1965)Google Scholar
  62. Fuxe, K.: Tools in the treatment of Parkinson's disease: studies on new types of dopamine receptor stimulating agents. Advanc. Neurol. 3, 273–279 (1973)Google Scholar
  63. Fuxe, K., Goldstein, M., Hökfelt, T., Jonsson, G., Lidbrink, P.: Dopaminergic involvement in hypothalamic function: extrahypothalamic and hypothalamic control. A neuroanatomical analysis. Advanc. Neurol. 5, 405–419 (1974)Google Scholar
  64. Gerlach, J., Reisby, N., Randrup, A.: Dopaminergic hypersensitivity and cholinergic hypofunction in the pathophysiology of tardive dyskinesia. Psychopharmacologia (Berl.) 34, 21–24 (1974)Google Scholar
  65. Gessa, R., Tagliamonte, A., Gessa, G. L.: Blockade by apomorphine of haloperidol-induced dyskinesia in schizophrenic patients. Lancet 1972, 981–982Google Scholar
  66. Gilbert, G. J.: Spasmodic torticollis treated effectively by medical means. New Engl. J. Med. 284, 896–898 (1971)Google Scholar
  67. Glowinski, J., Axelrod, J., Iversen, L. L.: Regional studies of catecholamines in the rat brain. IV effects of drugs on the disposition and metabolism of H3-norepinephrine and H3-dopamine. J. Pharmacol. exp. Ther. 153, 30–41 (1966)Google Scholar
  68. Hattori, T., McGeer, P. L., Fibiger, H. C., McGeer, E.G.: On the source of GABA-containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies. Brain Res. 54, 103–104 (1973)Google Scholar
  69. Herz, A., ZieglgÄnsberger, W.: Synaptic excitation in the corpus striatum inhibited by microiontophoretically administered dopamine. Experientia (Basel) 22, 839–840 (1966)Google Scholar
  70. Herz, A., ZieglgÄnsberger, W.: The influence of micro-iontophoretically applied biogenic amines, cholinomimetics and procaine on synaptic excitation in the corpus striatum. Int. J. Neuropharmacol. 7, 221–230 (1968)Google Scholar
  71. Hornykiewicz, O.: Dopamine (3-hydroxytyramine) and brain function. Pharmacol. Rev. 18, 925–964 (1966)Google Scholar
  72. Hull, C. D., Bernardi, G. A., Buchwald, N. A.: Intracellular responses of caudate neurons to brain stem stimulation. Brain Res. 22, 163–179 (1970)Google Scholar
  73. Hull, C. D., Levine, M. S., Buchwald, N. A., Heller, A., Browning, R. A.: The spontaneous firing pattern of forebrain neurons. I. The effects of dopamine and non-dopamine depleting lesions as caudate unit firing patterns. Brain Res. 73, 241–262 (1974)Google Scholar
  74. Ibata, T., Noiyo, Y., Matsuura, T., Sano, Y.: Nigro-neostriatal projection. A correlation study with Fink-Heimer impregnation, fluorescence, histochemistry and electron microscopy. Z. Zellforsch. 138, 333–344 (1973)Google Scholar
  75. Iversen, L., Glowinski, J.: Regional studies of catecholamines in the rat. II. Rate of turnover of catecholamines in various brain regions. J. Neurochem. 13, 671–682 (1966)Google Scholar
  76. Javoy, F., Hamon, N., Glowinski, J.: Disposition of newly synthesized amines in cell bodies and terminals of central catecholaminergic neurons. Europ. J. Pharmacol. 10, 178–188 (1970)Google Scholar
  77. Javoy, F., Glowinski, J.: Dynamic characteristics of the “functional compartment” of dopamine in dopaminergic terminals of the rat striatum. J. Neurochem. 18, 1805–1811 (1971)Google Scholar
  78. Javoy, F., Agid, Y., Bouvet, D., Glowinsky, J.: Feedback control of dopamine synthesis in dopaminergic terminals of the rat striatum. J. Pharmacol. exp. Ther. 182, 454–463 (1972)Google Scholar
  79. Jenner, P., Taylor, A. R., Campbell, D. B.: Preliminary investigation of the metabolism of piribedil (ET-495); a new central dopaminergic agonist and potential anti-parkinson agent. J. Pharm. Pharmacol. 25, 749–750 (1973)Google Scholar
  80. Klawans, H. L.: The pharmacology of parkinsonism. Dis. nerv. Syst. 29, 805–816 (1969)Google Scholar
  81. Klawans, H. L.: A pharmacologic analyses of Huntington's chorea. Europ. Neurol. 4, 148–163 (1970)Google Scholar
  82. Klawans, H. L.: The pharmacology of tardive dyskinesia. Amer. J. Psychiat. 130, 82–86 (1973)Google Scholar
  83. Klawans, H. L., Ilahi, M. M., Shenker, D.: Theoretical implications of the use of l-Dopa in parkinsonism. A review. Acta neurol. scand. 46, 409–441 (1970)Google Scholar
  84. Krauthamer, G., Feltz, P., Albe-Fessard, D.: Neurons of the medial diencephalon. II. Excitation of central origin. J. Neurophysiol. 30, 81 (1967)Google Scholar
  85. Lal, S., De La Vega, C. E., Carelis, E., Sourkes, T. L.: Apomorphine, pimozide, l-Dopa and the probenecid test in Huntington's chorea. Psychiat. Neurol., Neurochir. (Amst.) 76, 113–117 (1973)Google Scholar
  86. Langer, Z.: Presynaptic regulation of catecholamine release. Biochem. Pharmacol. 23, 1793–1900 (1974)Google Scholar
  87. La Plante, M., St. Laurent, J.: La recherche des bases biochemiques et des syndromes schizophréniques: une revue. Can. 102, 2267–2278 (1973)Google Scholar
  88. Liles, S. L., Davis, G. D.: Athetoid and choreiform hyperkinesias produced by caudate lesions in the cat. Science 164, 195–197 (1969)Google Scholar
  89. Maler, L., Fibiger, H. C., McGeer, P. L.: Demonstration of the nigro-striatal projection by silver staining after nigral injections of 6-hydroxydopamine. Exp. Neurol. 40, 505–515 (1973)Google Scholar
  90. Mandell, S.: The treatment of dystonia with l-Dopa and haloperidol. Neurology (Minneap.) 20, 103–106 (1970)Google Scholar
  91. Marco, L. A., Copack, P., Edelson, A. M.: Intrinsic connections of caudate neurons. Locally evoked intracellular responses. Exp. Neurol. 40, 683–698 (1973)Google Scholar
  92. McKenzie, G. M., Szerb, J. C.: The effect of dihydroxyphenylalanine, pheniprazine and d-amphetamine on the in vivo release of dopamine from the caudate nucleus. J. Pharmacol. exp.. Ther. 162, 302–308 (1968)Google Scholar
  93. McLennan, H.: The release of acetylcholine and of 3-hydroxytyramine from the caudate nucleus. J. Physiol. (Paris) 174, 152–161 (1964)Google Scholar
  94. McLennan, H., York, D. H.: The action of dopamine on neurons of the caudate nucleus. J. Physiol. (Lond.) 189, 393–402 (1967)Google Scholar
  95. Miller, R. J., Iversen, L. L.: Stimulation of a dopaminesensitive adenylate-cyclase in homogenates of rat striatum by a metabolite of pirebedil (ET-495). Naunyn. Schmiedeberg's Arch. Pharmacol. 282, 213–216 (1974)Google Scholar
  96. Moore, R. Y., Bhatnagar, R. K., Heller, A.: Anatomical and chemical studies of a nigro-neostriatal projection in the cat. Brain Res. 30, 119–135 (1971)Google Scholar
  97. Neill, D. B., Grossman, S. P.: Behavioural effects on cholinergic blockade of the dorsal and ventral caudate of rats. J. comp. physiol. Psychol. 71, 311–317 (1970)Google Scholar
  98. Olson, L., Seiger, A., Fuxe, K.: Heterogeneity of striatal and limbic dopamine innervation: highly fluorescent islands in the developing and adult rats. Brain Res. 44, 283–288 (1972)Google Scholar
  99. Papeschi, R.: Dopamine, extrapyramidal system and psychomotor function. Psychiat. Neurol. Neurochir. (Amst.) 75, 13–48 (1972)Google Scholar
  100. Poignant, J. C., Lejeune, F., Malecot, E., Petitjean, M., Regnier, G., Canevari, R.: Effects comparés du piribedil et de trois de les métabolites sur le systéme extrapyramidal du rat. Experientia (Basel) 30, 70–71 (1974)Google Scholar
  101. Portig, P. J., Sharman, D. F., Vogt, M.: Release by d-tubocurarine of dopamine and homovanillic acid from the superfused caudate nucleus. J. Physiol. (Lond.) 194, 565–572 (1968)Google Scholar
  102. Portig, P. J., Vogt, M.: Release into the cerebral ventricles of substances with possible transmitter function in the caudate nucleus. J. Physiol. (Lond.) 204, 687–715 (1969)Google Scholar
  103. Pijnenburg, A. J. J., van Rossum, J. M.: Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens. J. Pharm. Pharmocol. 25, 1003–1004 (1973)Google Scholar
  104. Pijnenburg, A. J. J., Woodruff, G. N., van Rossum, J. M.: Ergometrine induced locomotor activity following intracerebral injection into the nucleus accumbens. Brain Res. 59, 289–302 (1973)Google Scholar
  105. Riddell, D., Szerb, J. C.: The release in vivo of dopamine synthesized from labelled precursors in the caudate nucleus of the cat. J. Neurochem. 18, 989–1006 (1971)Google Scholar
  106. Robinson, N., Wells, F.: Distribution and localization of sites of gamma aminobutyric acid metabolism in the adult rat brain. J. Anat. (Lond.) 114, 365–378 (1973)Google Scholar
  107. Rogers, D. K., McKenzie, J. S.: Regional differences within the caudate nucleus for suppression of extralemniscal thalamic units. Brain Res. 56, 345–349 (1973)Google Scholar
  108. Sandler, M.: Some anomalies in the l-Dopa response: recent biochemical studies. Advanc. Neurol. 5, 259–263 (1973)Google Scholar
  109. Schwab, R. S., Amador, L. V., Lettin, J. Y.: Apomorphine in Parkinson's disease. Trans. Amer. Neurol. Ass. 76, 251–253 (1951)Google Scholar
  110. Schwartz, S.: Effects of dopamine, mescaline and substantia nigra on caudate neurones. C.I.N.P. VII. Congress, Prague, Vol. II, p. 392 (1970)Google Scholar
  111. Seeman, P.: Comparison of pre-synaptic and post-synaptic theories of neuroleptic action. J. Pharmacol. 5, Suppl. 2, 91 (1974)Google Scholar
  112. Stevens, J. R.: An anatomy of schizophrenia. Arch. gen. Psychiat. 29, 177–189 (1973)Google Scholar
  113. Struyker-Boudier, H. J., Gielen, W., Cools, A. R., van Rossum, J. M.: Pharmacological analysis of the excitatory and inhibitory actions of the snail Helix aspersa. Arch. int. Pharmacodyn. 324–331 (1974)Google Scholar
  114. Tennyson, V. M., Barrett, R. E., Cohen, G., CÔté, L., Heikkila, R., Mytilineou, C.: The developing neostriatum of the rabbit: correlation of fluorescence histochemistry, electron microscopy, endogeneous dopamine levels, and (3H) dopamine uptake. Brain Res. 46, 251–285 (1972)Google Scholar
  115. Ungerstedt, U.: Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-neostriatal dopamine system. Acta physiol. scand., Suppl. 367, 69–73 (1971)Google Scholar
  116. Ungerstedt, U., Butcher, L. L., Butcher, S. G., Andén, N. E., Fux, K.: Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of rats. Brain Res. 14, 461–471 (1969)Google Scholar
  117. Van Rossum, J. M.: The significance of dopamine-receptor blockade for the action of neurolytic drugs. In: Excerpta Medica Int. Congress Series No. 129, pp. 321–329 (1967)Google Scholar
  118. Van Rossum, J. M., Hurkmans, J. A. Th. M.: Mechanism of action of psychomotor stimulant drug. Significance of dopamine in locomotor stimulant action. Int. J. Neuropharmacol. 3, 227–239 (1964)Google Scholar
  119. von Voigtlander, P. F., Moore, K. E.: The release of H3-dopamine from cat brain following electrical stimulation of the substantia nigra and caudate nucleus. Neuropharmacology 10, 733–741 (1971)Google Scholar
  120. Winocur, G.: Functional dissociation within the caudate nucleus of rats. J. comp. physiol. Psychol. 86, 432–439 (1974)Google Scholar
  121. Weil-Malherbe, H., Szara, S. I.: The biochemistry of functional and experimental psychoses. In: Kugelmass, eds., Springfield, American Lecture Series, p. 817 (1971)Google Scholar
  122. Wyatt, R. J., Termini, B. A., Davis, J.: Biochemical and sleep studies of schizophrenia: a review of the literature-1960–1970. Schizophren. Bull. 4, 10–44 (1971)Google Scholar
  123. York, D. H.: The inhibitory action of dopamine on neurones of caudate nucleus. Brain Res. 5, 263–266 (1967)Google Scholar
  124. York, D. H.: Possible dopaminergic pathway from substantia nigra to putamen. Brain Res. 20, 233–249 (1970)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Alexander R. Cools
    • 1
  • J. M. Van Rossum
    • 1
  1. 1.Department of PharmacologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations