Human Genetics

, Volume 92, Issue 6, pp 527–532 | Cite as

A strategy for the characterization of minute chromosome rearrangements using multiple color fluorescence in situ hybridization with chromosome-specific DNA libraries and YAC clones

  • Susanne Popp
  • Anna Jauch
  • Detlev Schindler
  • Michael R. Speicher
  • Christoph Lengauer
  • Helen Donis-Keller
  • Harold C. Riethman
  • Thomas Cremer
Original Investigations

Abstract

The identification of marker chromosomes in clinical and tumor cytogenetics by chromosome banding analysis can create problems. In this study, we present a strategy to define minute chromosomal rearrangements by multicolor fluorescence in situ hybridization (FISH) with “whole chromosome painting” probes derived from chromosome-specific DNA libraries and Alu-polymerase chain reaction (PCR) products of various region-specific yeast artificial chromosome (YAC) clones. To demonstrate the usefulness of this strategy for the characterization of chromosome rearrangements unidentifiable by banding techniques, an 8p+ marker chromosome with two extra bands present in the karyotype of a child with multiple anomalies, malformations, and severe mental retardation was investigated. A series of seven-color FISH experiments with sets of fluorochrome-labeled DNA library probes from flow-sorted chromosomes demonstrated that the additional segment on 8p+ was derived from chromosome 6. For a more detailed characterization of the marker chromosome, three-color FISH experiments with library probes specific to chromosomes 6 and 8 were performed in combination with newly established telomeric and subtelomeric YAC clones from 6q25, 6p23, and 8p23. These experiments demonstrated a trisomy 6pter→6p22 and a monosomy 8pter→8p23 in the patient. The present limitations for a broad application of this strategy and its possible improvements are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collins CC, Kuo WL, Segraves R, Fuscoe JC, Pinkel D, Gray JW (1991) Construction and characterization of plasmid libraries enriched in sequences from single human chromosomes. Genomics 11:997–1006Google Scholar
  2. Dauwerse JG, Wiegant J, Raap AK, Breuning MH, Ommen GJB van (1992) Multiple colors by fluorescence in situ hybridization using ratio-labelled DNA probes create a molecular karyotype. Hum Mol Genet 1:593–598Google Scholar
  3. Dutrillaux B, Couturier J, Richer CL, Viegas-Pequinot E (1976) Sequence of DNA replication in 277 R- and Q-bands of human chromosomes using a BrdU treatment. Chromosoma 58:51–61Google Scholar
  4. Grouchy J de, Turleau C (1984) Clinical atlas of human chromosomes, 2nd edn. Wiley, New YorkGoogle Scholar
  5. Heslop-Harrison JS, Harrison GE, Leitch IJ (1992) Reprobing of DNA:DNA in situ hybridization preparations. Trends Genet 8:372–373Google Scholar
  6. IJdo JW, Lindsay EA, Wells RA, Baldini A (1992) Multiple variants in subtelomeric regions of normal karyotypes. Genomics 14:1019–1025Google Scholar
  7. Johnson GD, Nogueira Araujo GM de C (1981) A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods 43:349–350Google Scholar
  8. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic in situ hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821Google Scholar
  9. Ledbetter DH (1992a) Minireview: cryptic translocations and telomere integrity. Am J Hum Genet 51:451–456Google Scholar
  10. Ledbetter DH (1992b) The “colorizing” of cytogenetics: is it ready for prime time? Hum Mol Genet 1:297–299Google Scholar
  11. Lengauer C, Green ED, Cremer T (1992) Fluorescence in situ hybridization of YAC clones after Alu-PCR amplification. Genomics 13:826–828Google Scholar
  12. Lengauer C, Speicher MR, Popp S, Jauch A, Taniwaki M, Nagaraja R, Riethman HC, Donis-Keller H, d'Urso M, Schlessinger D, Cremer T (1993) Chromosomal bar codes produced by multicolor fluorescence in situ hybridization with multiple YAC clones and whole chromosome painting probes. Hum Mol Genet 2:505–512Google Scholar
  13. Lichter P, Cremer T (1992) Chromosome analysis by non-isotopic in situ hybridization. In: Rooney DE, Czepulkowski BH (eds) Human cytogenetics — a practical approach, vol F, 2nd edn. IRL Press, Oxford, pp 157–192Google Scholar
  14. Lichter P, Boyle AL, Cremer T, Ward DC (1991) Analysis of genes and chromosomes by nonisotopic in situ hybridization. Genet Anal Techn Appl 8:24–35Google Scholar
  15. Manoir S du, Speicher MR, Joos S, Schröck E, Popp S, Döhner H, Kovacs G, Robert-Nicoud M, Lichter P, Cremer T (1993) Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet 90:590–610Google Scholar
  16. Nederlof PM, Flier S van der, Wiegant J, Raap AK, Tanke HJ, Ploem JS, Ploeg M van der (1990) Multiple fluorescence in situ hybridization. Cytometry 11: 126–131Google Scholar
  17. Nederlof PM, Flier S van der, Vrolijk J, Tanke HJ, Raap AK (1992) Fluorescence ratio measurements of double-labeled probes for multiple in situ hybridization by digital imaging microscopy. Cytometry 13:839–845Google Scholar
  18. Pinkel D, Gray JW, Trask B, Engh G van den, Fuscoe J, Dekken H van (1986) Cytogenetic analysis by in situ hybridization with fluorescently labeled nucleic acid probes. Cold Spring Harb Symp Quant Biol 51:151–157Google Scholar
  19. Ried T, Baldini A, Rand TC, Ward DC (1992a) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc Natl Acad Sci USA 89:1388–1392Google Scholar
  20. Ried T, Landes G, Dackowski W, Klinger K, Ward DC (1992b) Multicolor fluorescence in situ hybridization for the simultaneous detection of probe sets for chromosomes 13, 18, 21, X and Y in uncultured amniotic fluid cells. Hum Mol Genet 1:307–313Google Scholar
  21. Ried T, Lengauer C, Cremer T, Wiegant J, Raap AK, Ploeg M van der, Groitl P, Lipp M (1992c) Specific metaphase and interphase detection of the breakpoint region in 8q24 of Burkitt lymphoma cells by triple-color fluorescence in situ hybridization. Genes Chrom Cancer 4:1–6Google Scholar
  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  23. Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith MA, Nordenskjöld M, Pfragner R, Ponder BAJ (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chrom Cancer 4:257–263Google Scholar
  24. Wiegant J, Ried T, Nederlof PM, Ploeg M van der, Tanke HJ, Raap AK (1991) In situ hybridization with fluoresceinated DNA. Nucleic Acids Res 19:3237–3241Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Susanne Popp
    • 1
  • Anna Jauch
    • 1
  • Detlev Schindler
    • 2
  • Michael R. Speicher
    • 1
  • Christoph Lengauer
    • 1
  • Helen Donis-Keller
    • 3
  • Harold C. Riethman
    • 4
  • Thomas Cremer
    • 1
  1. 1.Institut für Humangenetik und Anthropologie der Universität HeidelbergHeidelbergGermany
  2. 2.Institut für Humangenetik, Biozentrum der Universität Würzburg, Am HublandWürzburgGermany
  3. 3.Division of Human Molecular Genetics, Department of SurgeryWashington University School of MedicineSt. LouisUSA
  4. 4.The Wistar InstitutePhiladelphiaUSA

Personalised recommendations