, Volume 65, Issue 1, pp 7–41 | Cite as

The Hypercycle

A principle of natural self-organization Part B: The abstract hypercycle
  • Manfred Eigen
  • Peter Schuster


Topologic methods are used to characterize a particular class of self-replicative reaction networks: the hypercycles. The results show that the properties of hypercycles are sufficient for a stable integration of the information contained in several self-replicative units. Among the catalytic networks studied, hypercyclic organization proves to be a necessary prerequisite for maintaining the stability of information and for promoting its further evolution. The techniques used in this paper, though familiar to mathematicians, are introduced in detail in order to make the logical arguments accessible to the nonmathematician.


Reaction Network Stable Integration Topologic Method Logical Argument Catalytic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 47.
    Fox, S.W., in: Protein Structure and Function, p. 126 (eds. J.L. Fox, Z. Deyl, A. Blazer). New York: M. Dekker 1976Google Scholar
  2. 48.
    Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. New York: Academic Press 1974Google Scholar
  3. 49.
    Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations. London: Wiley Interscience 1971Google Scholar
  4. 50.
    Grümm, H.R. (ed.): Analysis and Computation of Equilibria and Regions of Stability. IIASA Conf. Proc., Vol. 8, Laxenburg 1975Google Scholar
  5. 51.
    Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations, p. 321. New York: McGraw-Hill 1955Google Scholar
  6. 52.
    Volterra, V.: Mem. Acad. Lincei 2, 31 (1926); Lotka, A.J.: Elements of Mathematical Biology. New York: Dover 1956Google Scholar
  7. 53.
    Eigen, M., et al.: forthcoming paperGoogle Scholar
  8. 54.
    Schuster, P, Sigmund, K, Wolff, R.: Bull. Math. Biol. (in press)Google Scholar
  9. 55.
    Schuster, P.: Chemie in uns. Zeit 6, 1 (1972); Schuster, P., in: Biophysik, ein Lehrbuch, p. 688. (W. Hoppe, et al., eds.). Berlin: Springer 1977Google Scholar
  10. 56.
    Bhat, R.K., Schneider, F.W.: Ber. Bunseges. physik. Chem. 80, 1153 (1976)Google Scholar
  11. 57.
    La Salle, J., Lefschetz, S.: Stability by Lyapunov's Direct Method with Applications. New York: Academic Press 1961Google Scholar
  12. 58.
    Marsden, J.E., McCracken, M. (eds.): The Hopf Bifurcation and its Applications (Appl. Math. Sci., Vol. 19). New York: Springer 1976Google Scholar
  13. 59.
    Thom, R.: Stabilité Structurelle et Morphogenèse. New York: Benjamin 1972Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Manfred Eigen
    • 1
  • Peter Schuster
    • 2
  1. 1.Max-Planck-Institut für biophysikalische ChemieGöttingen
  2. 2.Institut für theoretische Chemie und Strahlenchemie der UniversitätWien

Personalised recommendations