Isolation and characterization of mitochondrial DNA from the alkane yeast Saccharomycopsis lipolytica
Article
Received:
- 43 Downloads
- 10 Citations
Summary
Mitochondrial (mt) DNA of the alkane yeast, Saccharomycopsis lipolytica, was isolated. Its buoyant density in CsCl was found to be of 1.687 g/cm3, indicating a GC content of 27.5% and its melting point Tm = 79.5 °C, indicating a GC content of 24.9%. The corresponding values for nuclear (n) DNA, are 1.709 g/cm3 (GC: 49.5%) and Tm = 90.5 (GC: 51.7%) respectively. Electron microscopy revealed that mtDNA has a circular structure with a contour length of about 14.5 µm corresponding to 45.5 kb per molecule. The size estimated from restriction analyses performed with 7 endonucleases was 48.35 kb/molecule. A restriction map was constructed, using the cleavage data of 4 endonucleases.
Key words
Saccharomycopsis lipolytica mtDNAPreview
Unable to display preview. Download preview PDF.
References
- Arrand JB, Myers PA, Roberts RJ (1978) J Mol Biol 188:127–135Google Scholar
- Bak AL, Christiansen C, Stenderup A (1969) Nature 224:270–271Google Scholar
- Bernardi G (1975) Molecular genetics of yeast mitochondria. In: Bernardi G, Gros F (eds) Organization and expression of the eukaryotec genome. Biochemical mechanism of differentiation in prokaryotes and eukaryotes. North-Holland/American Elsevier New YorkGoogle Scholar
- Cryer DR, Eccleshall R, Marmur J (1975) Isolation of yeast DNA. In: Prescott DM (ed) Methods in cell biology, Academic Press, New York, p 39Google Scholar
- Davis RW, Simon M, Davidson N (1971) Electron microscope heteroduplex methods for mapping regions of base sequence homology in nucleic acids. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 21. Academic Press, New York p 413Google Scholar
- Del Giudice L, Wolf K, Sassone-Corsi P, Alvino C (1978) Mol Gen Genet 164:289–293Google Scholar
- Esser K, Stahl U (1976) Mol Gen Genet 146:101–106Google Scholar
- Esser K, Tudzynski P, Stahl U, Kück U (1980) Mol Gen Genet 178:213–216Google Scholar
- Ferenczy L, Maraz A (1977) Nature 268:524–525Google Scholar
- Gaillardin CM, Charoy V, Heslot H (1973) Arch Mikrobiol 92:69–83Google Scholar
- Gillham NW (1978) Organelle heredity. Raven Press New YorkGoogle Scholar
- Gunge N, Sakaguchi K (1979) Mol Gen Genet 170:243–247Google Scholar
- Hollenberg CP, Borst P, van Bruggen EFJ (1970) Biochim Biophys Acta 209:1–15Google Scholar
- Humphreys GO, Willshaw GA, Anderson ES (1975) Biochim Biophys Acta 383:457–463Google Scholar
- Knecht R, Präve P, Seipenbusch R, Sukatsch DA (1977) Process Biochemistry 12:4–9Google Scholar
- Lang D, Mitani M (1970) Biopolymers 9:373–379Google Scholar
- Marmur S, Doty P (1962) J Mol Biol 5:109–118Google Scholar
- McDonell MW, Simon MN, Studier FW (1977) J Mol Biol 110:119–149Google Scholar
- Meyers JA, Sanchez D, Elwell LP, Falkow S (1976) J Bacteriol 127:1529–1537Google Scholar
- Murray K, Murray NE (1975) J Mol Biol 98:551–564Google Scholar
- Palmer ML, Raker MA, Kennedy PJ, Young JW, Barnes WM, Rodrigez RL, Noller HF (1979) Mol Gen Genet 172:171–178Google Scholar
- Stahl U, Esser K (1979) Eur J Appl Mikrobiol Biotechnol 8:271–278Google Scholar
- Stahl U, Kück U, Tudzynski P, Esser K (1980) Mol Gen Genet 178:639–646Google Scholar
- Stüber D, Bujard H (1977) Mol Gen Genet 154:299–303Google Scholar
- Szybalski W (1968) Use of cesium sulfate for equilibrium density gradient centrifugation. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, vol 12, Academic Press, New York p 330Google Scholar
- Tabak HF, Weijers PJ (1976) Febs Lett 69/1:211–215Google Scholar
- Thuring RWJ, Sanders JPM, Borst P (1975) Anal Biochem 66:213–220Google Scholar
- Tudzynski P, Esser K (1979) Mol Gen Genet 173:71–84Google Scholar
- Wickerham LJ, Kurtzman CP, Herman AI (1969) Sexuality in Candida lipolytica. In: Recent trends in yeast research. Miner Institute, New YorkGoogle Scholar
- Wickerham LJ, Kurtzman CP, Herman AI (1970) Science 167:1141Google Scholar
Copyright information
© Springer-Verlag 1980