Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Stick-slip instability analysis

  • 199 Accesses

  • 9 Citations


A theoretical investigation of friction-induced self-excited oscillations for systems with one degree of freedom is proposed. The friction force is assumed as an odd function of the relative sliding velocity with a jump discontinuity at a value of zero for the relative sliding velocity. The friction characteristic is approximated with a piecewise linear function, i.e. straight line segments with a suitable slope. For the generic system belonging to the class in question, the stick-slip instability region is located on a suitable dimensionless map.


Viene proposta un'indagine teorica sulle oscillazioni autoeccitate indotte dall'attrito per sistemi ad un grado di libertà. La forza d'attrito viene assunta come funzione dispari della velocità relativa tra le superfici accoppiate, con una discontinuità di prima specie in corrispondenza del valore nullo della velocità. La caratteristica d'attrito viene approssimata mediante una funzione lineare a tratti con segmenti di opportuna pendenza. Per il generico sistema appartenente alla classe in esame, si perviene all'individuazione, su opportuna mappa adimensionale, della regione di instabilità da stick-slip.

This is a preview of subscription content, log in to check access.


  1. 1.

    Singh, B. R., ‘Study of critical velocity of stick-slip sliding’, ASME J. Engng Ind., Nov. (1960) 393–398.

  2. 2.

    BrockleyC. A., CameronR. and PotterA. F., ‘Friction induced vibration’, ASME Trans., Series F, 89 (1967) 101–108.

  3. 3.

    BrockleyC. A. and KoP. L., ‘Quasi-harmonic friction induced vibration’, ASME J. Lubric. Technol., 92 (1970) 550–556.

  4. 4.

    KoP. L. and BrockleyC. A., ‘The measurement of friction and friction-induced vibration’, ASME J. Lubric. Technol., 92 (1970) 543–549.

  5. 5.

    EarlesS. W. E. and LeeC. K., ‘Instability arising from the frictional interaction of pin-disk system resulting in noise generation’, ASME J. Engng Ind., 98 (1976) 81–86.

  6. 6.

    AntoniouS. S., CameronA. and GentleC. R., ‘The friction-speed relation from stick-slip data’, Wear, 36 (1976) 235–254.

  7. 7.

    CockerhamG. and SymmonsG. R., ‘Stability criterion for stick-slip motion using a discontinous dynamic friction model’, Wear, 40 (1976) 113–120.

  8. 8.

    VattaF., ‘On the stick-slip phenomenon’, Mech. Res. Commun., 6 (1979) 203–208.

  9. 9.

    Jerzy, K., ‘Mathematical model of the stick-slip phenomenon’, Wear, No. 55 (1979) 261–263.

  10. 10.

    AronovV., D'SouzaA. F., KalpakjianS. and ShareefI., ‘Experimental investigation of the effect of system rigidity on wear and friction-induced vibrations’, ASME J. Lubric. Technol., 105 (1983) 206–211.

  11. 11.

    Capone, G., D'Agostino, V., della Valle, S. and Guida, D., ‘On the self-excited vibrations due to friction’, La Meccanica Italiana, No. 222 (1988) 50–54.

  12. 12.

    TakanoE., HaraT., SaekiM., ‘Oscillations caused by solid friction in a hydraulic driving system’, JSME International J., Ser. III, 31 (1) (1988) 48–57.

  13. 13.

    GaoC. and Kuhlmann-WilsdorfD., ‘On stick-slip and the velocity dependence of friction at low speeds’, ASME J. Tribol., 112 (1990) 354–360.

  14. 14.

    StokerJ. J., Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publisher, New York, 1950.

  15. 15.

    BlaquiereA., Nonlinear System Analysis, Academic Press, New York and London, 1966.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Capone, G., D'agostino, V., Valle, S.d. et al. Stick-slip instability analysis. Meccanica 27, 111 (1992). https://doi.org/10.1007/BF00420589

Download citation

Key words

  • Stick-slip
  • Instability
  • Non-linear systems
  • Self-excited oscillations
  • Limit cycle