Nutrient Cycling in Agroecosystems

, Volume 46, Issue 3, pp 249–255 | Cite as

Use of elemental sulphur to enhance a cadmium solubilization and its vegetative removal from contaminated soil

  • R. Tichý
  • J. Fajtl
  • S. Kužel
  • L. Kolář


To a soil artificially contaminated with cadmium, orthorhombic sulphur flower and a hydrophillic microbially produced elemental sulphur were added to induce the soil acidification. The soil was incubated in pots under opensky conditions. pH, sulphate, and cadmium solubility were recorded in time. Soil acidification with microbially produced sulphur proceeded without any delay and at considerably higher rates, compared to the sulphur flower. Cadmium solubilization was solely controlled by the soil pH during the experiments. Similar experiments with cultivation of common mustard (Sinapis alba, cultivar JARA) were performed, evaluating both changes of cadmium solubilization and uptake by biomass. Cadmium concentration in shoots increased with decreasing pH. However, biomass was negatively affected by the decreasing pH. Combining these two effects, a pH-optimum for maximum cadmium removal from the soil by plants was found at pH=5–5.5.

Key words

biological sulphur heavy metals phytoremediation soil sanitation vegetative uptake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alloway B. J., & Jackson A. P. (1991). The behaviour of heavy metals in sewage sludge-amended soils. Sci. Total Environ., 100, 151–176.CrossRefPubMedGoogle Scholar
  2. Baker, A. J. M., McGrath, S. P., Sidoli, C., & Reeves, R. D (1992). The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. Proc. Int. Symp ‘Soil decontamination Using Biological Processes’, Karsruhe (6–9 DEC).Google Scholar
  3. Baker A. J. M., Reeves R. D., & McGrath S. P. (1991). In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants-A feasibility study. In Situ Bioreclamation, R.E. Hinchee, R.F. Offenbach (eds.), Butterworth-Heinemann, Boston, 601–605.Google Scholar
  4. Banuelos G. S., Cardon G. E., Phene C. J., Wu L., & Akohoue S. (1993). Soil boron and selenium removal by 3 plant species. Plant and Soil, 148 (2), 253–263.CrossRefGoogle Scholar
  5. Berthelsen B. O., Ardal L., Steinnes E., Abrahamsen G. & Stuanes A. O. (1994). Mobility of heavy metals in pine forest soils influenced by experimental acidification. Water, Air and Soil Pollution, 73, 29–48.CrossRefGoogle Scholar
  6. Blais J. F., Tyagi R. D., & Auclair J. C. (1993). Bioleaching of metals from sewage sludge: microorganisms and growth kinetics. Wat. Res., 27 (1), 101–110.CrossRefGoogle Scholar
  7. Buisman C.J.N., IJspeert P., Hof A., Janssen A.J.H., ten Hagen R. and Lettinga G. (1991) Kinetic parameters of a mixed culture oxidizing sulfide and sulfur with oxygen. Biotech. Bioeng. 38, 813–820.CrossRefGoogle Scholar
  8. Canarutto S. (1993). Decontamination of heavy metal-contaminated soil by the growth of medicago sativa L.: Laboratory trials. 10705enius Envir.Bull., 2, 711–716.Google Scholar
  9. Carillo R. G., & Cajuste L. J. (1992). Heavy metals in soils and alfalfa (Medicago sativa L.) irrigated with three sources of wastewater. J. Environ. Sci. Health, A27 (7), 1771–1783.CrossRefGoogle Scholar
  10. Davies B. E. (1992). Inter-relationship between soil properties and the uptake of cadmium, copper, lead and zinc from contaminated soils by radish (Raphanus sativus L.). Wat. Air Soil Pollut., 63, 331–342.CrossRefGoogle Scholar
  11. de Boo W. (1990). Cadmium in agriculture. Toxicol. Environ. Chem., 27, 55–63.CrossRefGoogle Scholar
  12. Eger P. (1994). Wetland treatment for trace metal removal from mine drainage: the importance of aerobic and anaerobic processes. Wat. Sci. Tech., 29 (4), 249–256.Google Scholar
  13. Eriksson J. E. (1989). The influence of pH, soil type and time on adsorption and uptake by plants of Cd added to the soil. Wat. Air. Soil. Pollut., 48, 317–335.Google Scholar
  14. Ernst, W. H. O. (1992). Decontamination or consolidation of metalcontaminated soils by biological means. SETAC. Int. Workshop, Liblice, Czechoslovakia.Google Scholar
  15. Ervio R. (1991). Acid-induced leaching of elements from cultivated soils. Ann. Agricult. Fenniae, 30, 331–344.Google Scholar
  16. Evans L. J. (1989). Chemistry of metal retention by soils. Environ. Sci. Technol., 23 (9), 1046–1056.CrossRefGoogle Scholar
  17. Germida J.J. and Janzen H.H. (1993) Factors affecting the oxidation of elemental sulphur in soils. Fertilizer Res. 35, 101–114.CrossRefGoogle Scholar
  18. Houba V.J.G., Novozamsky I., Huijbregts A.W.M. and van der Lee J.J. (1986). Comparison of soil extractions by 0.01 m CaCl2, by EUF and by some conventional extraction procedures. Plant and Soil 96, 433–437.CrossRefGoogle Scholar
  19. Janssen A., Sleyster R., van der Kaa C., Jochemsen J., Bontsema J. and Lettinga G. (1995) Biological sulphide oxidation in a fedbatch reactor. Biotech. Bioeng. 47, 327–333.CrossRefGoogle Scholar
  20. Janssen a., de Keizer A., van Aelst A., Fokking R., Yanling H. and Lettinga G. (1996) Surface characteristics and aggregation of microbiologically produced sulphur particles in relation to the process conditions. Colloids and Surfaces B: Biointerfaces 6, 115–129.CrossRefGoogle Scholar
  21. Kauritschev I.S. (1986). Praktikum po potschvovedjeniu (Methods in soil science). Kolos, Moscow, pp. 266–271.Google Scholar
  22. Kužel S., Kolář L., Nýdl V. and Tichý R. 1994. Spatial variability of cadmium, pH, organic matter on 29 and 1-ha scales. Wat. Air Soil Pollut. 47: 71–82.Google Scholar
  23. McCaskill M.R., and G.J. Blair (1986). Particle Size and Soil Texture Effects on Elemental Sulfur Oxidation, Agronomy Journal 79, 1079–1083.CrossRefGoogle Scholar
  24. Merrington G., & Alloway B. J. (1994). The Flux of Cd, Cu, Pb and Zn in Mining Polluted Soils. Water Air and Soil Pollution, 73 (1–4), 333–344.CrossRefGoogle Scholar
  25. Rulkens W.H., Tichý R. and Grotenhuis J.T.C. 1996. Sites polluted with heavy metals: Current techniques for clean-up and desirable future developments. In: Heavy metals in the environment. Proc. Int. Conf. Hamburg, September 1995. Edited by Wilken R.-D., Förstner U. and Knöchel A. CEP Consultants Ltd., Edinburgh, pp. 11–19.Google Scholar
  26. Schaeffer W.I., Holbert P.E. and Umbreit W.W. (1963) Attachment of Thiobacillus thiooxidans to sulfur crystals. J. Bacteriol. 85, 137–140.PubMedGoogle Scholar
  27. Sheppard M. I., & Thibault D. H. (1992). Desorption and extraction of selected heavy metals from soils. Soil Science Society of America Journal 5, 56 (2), 415–423.CrossRefGoogle Scholar
  28. Smilde K. W., van Luit B. & van Driel W. (1992). The extraction by soil and absorption by plants of applied zinc and cadmium. Plant and Soil, 143, 233–238.CrossRefGoogle Scholar
  29. Solari J.A., Huerta G., Escobar B., Vargas T., Badilla-Ohlbaum R. and Rubio J. (1992) Interfacial phenomena affecting the adhesion of Thiobacillus ferrooxidans to sulphide mineral surfaces. Colloids and Surfaces 69, 159–166.CrossRefGoogle Scholar
  30. Tichý R., Grotenhuis J.T.C., Janssen A., Van Houten R., Rulkens W.H. and Lettinga G. (1993) Application of the sulphur cycle for bioremediation of soils polluted with heavy metals. In: Proc. Int. Conf. Contaminated Soil '93 May 1993, Berlin. Arendt F., Annokée G.J., Bosman R. and Van der Brink W.J. (eds.), Kluwer Academic Publishers, Dordrecht, pp. 1461–1462.Google Scholar
  31. Tichý R., Janssen A., Grotenhuis J.T.C., Lettinga G. and Rulkens W.H. (1994) Possibilities for using biologically-produced sulphur for cultivation of thiobacilli with respect to bioleaching processes. Bioresour. Technol. 48, 221–227.CrossRefGoogle Scholar
  32. Tichý, R., Nýdl, V., Kužel, S. and Kolář, L. (1996) Increased availability to plants of sewage-sludge-born cadmium. Wat. Air Soil Pollut. (in press).Google Scholar
  33. Tuin B.J.W. and Tels M. (1990) Extraction kinetics of six heavymetals from contaminated clay soils. Environ. Technol. 11/1, 541–554.Google Scholar
  34. van Houten R.T., Hulshoff Pol L.W. and Lettinga G. (1994) Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotech. Bioeng. 44, 586–594.CrossRefGoogle Scholar
  35. Watkinson J.H., and Blair G.J. (1993) Modelling the oxidation of elemental sulphur in soils. Fertilizer Research 35, 115–126.CrossRefGoogle Scholar
  36. Witter E., Giller K. E., & Mcgrath S. P. (1994). Long-Term Effects of Metal Contamination on Soil Microorganisms. Soil Biology & Biochemistry, 26 (3), 421–422.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • R. Tichý
    • 1
  • J. Fajtl
    • 2
  • S. Kužel
    • 2
  • L. Kolář
    • 2
  1. 1.Institute of Landscape EcologyCzech Academy of SciencesČeské BudějoviceCzech Republic
  2. 2.Faculty of Agriculture, Department of General Plant ProductionUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations