Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Algebraic fermion bosonization

  • 57 Accesses

  • 10 Citations

Abstract

By exploiting the construction of charged field algebras as canonical extensions of CCR current algebras in 1+1 dimensions and nonregular representations of extended algebras, we provide an algebraic construction of local Fermi fields as ultrastrong limits of bosonic variables in all representations which are locally Fock with respect to the ground-state representation of the massless scalar field.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    StreaterR. F., in C. P.Enz and J.Mehra (eds.), Physical Reality and Mathematical Description, D. Reidel, Dordrecht, 1974, pp. 375–386 and refs therein.

  2. 2.

    CareyA. L. and RuijsenaarsS. N. M., Acta Appl. Math. 10, 1 (1987).

  3. 3.

    Acerbi, F., Master thesis, SISSA, October 1990; Acerbi, F., Morchio, G., and Strocchi, F., Infrared singular fields and non-regular representations of CCR algebras, preprint SISSA 39/92 FM; J. Math. Phys., in press, and Lett. Math. Phys., in press.

  4. 4.

    CareyA. L., RuijsenaarsS. N. M., and WrightJ. D., Comm. Math. Phys. 99, 347 (1985).

  5. 5.

    MandelstamS., Phys. Rev. D 11, 3026 (1975).

  6. 6.

    SkyrmeT. H. R., Proc. Roy. Soc. London Ser. A 247, 260 (1958).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Acerbi, F., Morchio, G. & Strocchi, F. Algebraic fermion bosonization. Lett Math Phys 26, 13–22 (1992). https://doi.org/10.1007/BF00420514

Download citation

Mathematics Subject Classifications (1994)

  • 47D45
  • 81T05
  • 81T40