Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mapping properties of wave and scattering operators for two-body Schrödinger operators

  • 52 Accesses

  • 18 Citations

Abstract

The modified wave and scattering operators are shown to be bounded between weighted L 2-spaces for two-body Schrödinger operators with long range potentials.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Amrein, W. O., Cibils, B., and Sinha, K. B., Configuration space properties of the S-matrix and time delay in potential scattering. Ann. Inst. H. Poincaré, Phys. Théor. 47, 367–382 (1987).

  2. 2.

    Cycon, H. L., Froese, R. G., Kirsch, W., and Simon, B., Schrödinger Operators, Springer-Verlag, Heidelberg, 1987.

  3. 3.

    Herbst, I. and Skibsted, E., Time-dependent approach to radiation conditions, Duke Math. J. 64, 119–147 (1991).

  4. 4.

    Isozaki, H., Differentiability of generalized Fourier transforms associated with Schrödinger operators, J. Math. Kyoto Univ. 25, 789–806 (1985).

  5. 5.

    Isozaki, H., Decay rates of scattering states for Schrödinger operators, J. Math. Kyoto Univ. 26, 595–603 (1986).

  6. 6.

    Isozaki, H. and Kitada, H., Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 32, 77–104 (1985).

  7. 7.

    Isozaki, H. and Kitada, H., Scattering matrices for two-body Schrödinger operators, Sci. Papers College Arts Sci. Univ. Tokyo 35, 81–107 (1985).

  8. 8.

    Isozaki, H. and Kitada, H., A remark on the micro-local resolvent estimates for two body Schrödinger operators, Publ. RIMS, Kyoto Univ. 21, 889–910 (1985).

  9. 9.

    Jensen, A. and Kato, T., Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J. 46, 583–611 (1979).

  10. 10.

    Jensen, A., Propagation estimates for Schrödinger type operators, Trans. Amer. Math. Soc. 291, 129–144 (1985).

  11. 11.

    Jensen, A., Commutator methods and a smoothing property of the Schrödinger evolution group, Math. Z. 191, 53–59 (1986).

  12. 12.

    Lions, J. L. and Magenes, E., Problèmes aux limites non homogenes et applications, Dunod, Paris, 1968.

  13. 13.

    Nakamura, S., Time-delay and Lavine's formula, Comm. Math. Phys. 109, 397–415 (1987).

  14. 14.

    Perry, P. A., Propagation of states in dilation analytic potentials and asymptotic completeness, Comm. Math. Phys. 81, 243–259 (1981).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jensen, A., Nakamura, S. Mapping properties of wave and scattering operators for two-body Schrödinger operators. Lett Math Phys 24, 295–305 (1992). https://doi.org/10.1007/BF00420489

Download citation

Mathematics Subject Classifications (1991)

  • Primary: 35P25
  • Secondary: 47A40, 81U05