Current Genetics

, Volume 8, Issue 2, pp 115–119 | Cite as

Possible chromosomal location for the killer determinant in Torulopsis glabrata

  • K. S. Sriprakash
  • C. Batum


We have used cytoduction and protoplast fusion to characterise the killer trait in Torulopsis glabrata. Killer trait could not be transferred by cytoduction to a non-killer strain of T. glabrata suggesting that the determinant(s) is/are not present in the cytoplasm. Consistent with this interpretation is the observation that all fusion products, where chromosomes of both the parents are represented, are killers. Non-killer segregants could be isolated from fusion products after treatment with benlate suggesting that loss of the trait is associated with non-disjunction and loss of a chromosome.

Key words

Killer-Torulopsis yeast Cytoduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bevan EA, Herring AJ, Mitchell DJ (1973) Nature 245:81–86CrossRefGoogle Scholar
  2. Bussey H, Skipper N (1975) J Bacteriol 124:476–483PubMedPubMedCentralGoogle Scholar
  3. Clark-Walker GD, Azad AA (1980) Nucleic Acids Res 8:1009–1021CrossRefGoogle Scholar
  4. Clark-Walker GD, McArthur CR, Daley DJ (1981) Curr Genet 4:7–12CrossRefGoogle Scholar
  5. Clark-Walker GD, Sriprakash KS, McArthur CR, Azad AA (1980) Curr Genet 1:209–217CrossRefGoogle Scholar
  6. Davis RW, Thomas M, Cameron J, St John TP, Scherer S, Padgett RA (1980) Methods Enzymol 65:404–411CrossRefGoogle Scholar
  7. Fink GR, Styles CA (1972) Proc Natl Acad Sci USA 69:2846–2849CrossRefGoogle Scholar
  8. Fried HM, Fink GR (1978) Proc Natl Acad Sci USA 75:4224–4228CrossRefGoogle Scholar
  9. Galeotti CL, Clark-Walker GD (1983) Changes of Gene Expression in Fusion Products between Saccharomyces cerevisiae and Kluyveromyces lactis. In: Nagley P, Linnane AW, Peacock WJ, Pateman JA (eds) Manipulation and Expression of Genes in Eukaryotes. Academic Press Australia, p 159Google Scholar
  10. Galeotti CL, Sriprakash KS, Batum CM, Clark-Walker GD (1981) Mutat Res 81:155–164CrossRefGoogle Scholar
  11. Gunge N, Sakaguchi K (1981) J Bacteriol 147:155–160PubMedPubMedCentralGoogle Scholar
  12. Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) J Bacteriol 145:382–390PubMedPubMedCentralGoogle Scholar
  13. Oakley KM, Clark-Walker GD (1978) Genetics 90:517–530PubMedPubMedCentralGoogle Scholar
  14. O'Connor RM, McArthur CR, Clark-Walker GD (1976) J Bacteriol 126:959–968PubMedPubMedCentralGoogle Scholar
  15. O'Farrell PH, Kutter E, Nakanishi M (1980) Mol Gen Genet 179:421–435CrossRefGoogle Scholar
  16. Smith GE, Summers MD (1980) Analytical Biochem 109:123–129CrossRefGoogle Scholar
  17. Sriprakash KS, Batum CM (1981) Curr Genet 4:73–80CrossRefGoogle Scholar
  18. Sweeney TK, Tate A, Fink GR (1976) Genetics 84:27–42PubMedPubMedCentralGoogle Scholar
  19. Upshall A, Giddings B, Mortimore ID (1977) J Gen Microbiol 100:413–418CrossRefGoogle Scholar
  20. Wesolowski M, Algeri A, Goffrini P, Fukuhara H (1982) Curr Genet 5:191–197CrossRefGoogle Scholar
  21. Wickner RB (1974) J Bacteriol 117:1356–1357PubMedPubMedCentralGoogle Scholar
  22. Wickner RB (1976) Bacteriol Rev 40:757–773PubMedPubMedCentralGoogle Scholar
  23. Young TW, Yagiu M (1978) Antonie van Leeuwenhoek 44:59–77CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • K. S. Sriprakash
    • 1
  • C. Batum
    • 1
  1. 1.Genetics Department, Research School of Biological SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations