Current Genetics

, Volume 8, Issue 2, pp 99–105 | Cite as

Genetic studies of purine breakdown in the fission yeast Schizosaccharomyces pombe

  • James R. Kinghorn
  • Rudolf Fluri


Purines such as hypoxanthine, xanthine, uric acid, allantoin and allantoic acid serve as sole nitrogen sources for the yeast Schizosaccharomyces pombe. A number of classes of mutants unable to use purines have been isolated and genetically analysed. Mutants in the urol gene lack uricase, all1 lack allantoinase, ala1 lack allantoicase whilst in ure1, ure2, ure3 and ure4 genes lack urease activity. Mutants in four hyp genes are unable to convert hypoxanthine to uric acid whilst mutation in xan1 results in impaired growth with xanthine. hyp5 strains are unable to convert both hypoxanthine and xanthine to uric acid. The mutations are recessive and none of the loci are linked to each other. The possible catalytic steps involved are discussed.

Key words

Schizosaccharomyces pombe Purine catabolism Purine hydroxylase Allantoinase Allantoicase Uricase, Ureidoglycollase and urease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelberg EA, Mandel M, Chen GCC (1965) Biochem Biophys Res Commun 18:788–793CrossRefGoogle Scholar
  2. Cooper TG (1980) Trends Biochem Sci Dec: 1–4Google Scholar
  3. Cove DJ (1979) Biol Rev 54:291–327CrossRefGoogle Scholar
  4. Darlington AJ, Scazzocchio C. Biochem Biophys Acta 166: 565–571Google Scholar
  5. Dunn E, Pateman JA (1972) Heredity 29:129Google Scholar
  6. Edwards TCR, Candido EPM, Chovnick A (1977) Mol Gen Genet 154:1–6CrossRefGoogle Scholar
  7. Fluri R, Kinghorn JR. The regulation of purine catabolism in Schizosaccharomyces pombe (in preparation)Google Scholar
  8. Gutz H, Heslot H, Leupold U, Loprieno N (1974) Schizosaccharomyces pombe. In: King RC (ed) Handbook of Genetics, vol 1. Plenum PressGoogle Scholar
  9. Haysman P, Branch Howe H (1971) Can J Genet Cytol 13:256–269CrossRefGoogle Scholar
  10. Kinghorn JR, Pateman JA (1977) Nitrogen metabolism. In: Smith JE, Pateman JA (eds) Genetics and Physiology of Aspergillus. Academic Press, London, pp 147–202Google Scholar
  11. Kolmark MG (1969) Mutat Res:51–63Google Scholar
  12. La Rue TA, Spencer JET (1968) Can J Microbiol 14:79–86CrossRefGoogle Scholar
  13. Lyon ES, Garrett RH (1978) J Biol Chem 253:2604–2614PubMedGoogle Scholar
  14. Mackay EM, Pateman JA (1980) J Gen Microbiol 116:249–251PubMedGoogle Scholar
  15. Marzluf GA (1981) Microbiol Rev 45:437–461PubMedPubMedCentralGoogle Scholar
  16. Muftic MK (1964) Nature 201:622–623CrossRefGoogle Scholar
  17. Reinert WR, Marzluf GA (1975) Mol Gen Genet 139:39–55CrossRefGoogle Scholar
  18. Scazzocchio C (1980) The genetics of molybdenum-containing enzymes. In: Coughlan MP (ed) Molybdenum and molybdenum containing enzymes. Pergammon PressGoogle Scholar
  19. Scazzocchio C, Darlington CD (1968) Biochem Biophys Acta 166:557–568PubMedGoogle Scholar
  20. Scazzocchio C, Holl FB, Foguelman (1973) Eur J Biochem 36:428–445CrossRefGoogle Scholar
  21. Scazzocchio C, Gorton D (1977) Regulation of purine breakdown. In: Smith JE (ed) Genetics and Physiology of Aspergillus. Academic Press, London, pp 225–265Google Scholar
  22. Sealy-Lewis HM, Lycan D, Scazzocchio C (1979) Mol Gen Genet 174:105–106CrossRefGoogle Scholar
  23. Sealy-Lewis HM, Scazzocchio C, Lee S (1978) Mol Gen Genet 164:303–308CrossRefGoogle Scholar
  24. Snow R (1966) Nature 211:206–207CrossRefGoogle Scholar
  25. Vogels GD, Van der Drift C (1970) Anal Biochem 33:143–157CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • James R. Kinghorn
    • 1
    • 2
  • Rudolf Fluri
    • 1
  1. 1.Institute of MicrobiologyUniversity of BernBernSwitzerland
  2. 2.Department of Biochemistry and MicrobiologyUniversity of St. AndrewsFifeScotland

Personalised recommendations