Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the spatially homogeneous Boltzmann equation with a velocity-dependent force term

  • 46 Accesses

  • 2 Citations

Abstract

A previous result of G. di Blasio, concerning the global solutions of the spatially homogeneous Boltzmann equation, for a classical gas of identical point particles in the presence of an external constant force, is extended to the case of velocity-dependent external forces.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Cercignani, C., Theory and Application of the Boltzmann Equation, Elsevier, New York, 1975.

  2. 2.

    Di Blasio G., Ann. Mat. Pura e Appl. 121, 223 (1979).

  3. 3.

    Di Blasio G., Boll. U.M.I. 8, 127 (1973).

  4. 4.

    Di Blasio G., Ann. Mat. Pura e Appl. 109, 317 (1976).

  5. 5.

    Arnold, V.I., Les Methodes Mathematiques de la Mecanique Classique, MIR, Moscow, 1976.

  6. 6.

    Reed, M. and Simon, B., Methods of Modern Mathematical Physics, Vol. II, Academic Press, New York, San Francisco, London, 1975.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Corciovei, A., Grünfeld, C.P. On the spatially homogeneous Boltzmann equation with a velocity-dependent force term. Lett Math Phys 7, 307–312 (1983). https://doi.org/10.1007/BF00420180

Download citation

Keywords

  • Statistical Physic
  • External Force
  • Group Theory
  • Boltzmann Equation
  • Constant Force