Advertisement

Current Genetics

, Volume 10, Issue 6, pp 449–452 | Cite as

Cloning and characterisation of the ribosomal RNA genes of the dimorphic yeast, Yarrowia lipolytica

  • Jeffrey J. Clare
  • Lance S. Davidow
  • David C. J. Gardner
  • Stephen G. Oliver
Original Articles

Summary

The ribosomal RNA genes of Yarrowia lipolytica have been identified, both in restriction digests of total genomic DNA and in a pBR322 gene bank, by hybridisation with cloned Saccharomyces cerevisiae rDNA. The Y. lipolytica rDNA repeat unit is 8.9 kb in size and contains the genes for the 25S and 18S, but not the 5S, rRNA species. The number of copies of these repeat units is approx. 50 per haploid genome. Several clones were found which did not conform to the standard restriction map due to differences outside the coding region. It appears that there is either heterogeneity of the spacer sequence within a strain or that the Y. lipolytica rDNA genes may be present as a number of separate clusters within this yeast's genome.

Key words

rRNA genes Yeast Yarrowia lipolytica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnitz J, Cramer JH, Rownd RH, Cooley L, Soll D (1982) FEBS Lett 143:129–132Google Scholar
  2. Bayev AA, Georgiev OI, Hadjiolov AA, Kermechiev MB, Nicholaev N, Skryabin KG, Zakharyev VM (1981) Nucleic Acids Res 8:4919–4962Google Scholar
  3. Bell GI, DeGennaro LJ, Gelfand DH, Bishop RJ, Valenzuela P, Rutter WJ (1977) J Biol Chem 252:8118–8125Google Scholar
  4. Bollen AP (1982) Organization of fungal ribosomal RNA genes. In: Busch H (ed) The cell nucleus, vol 10. Academic Press, New York London, pp 67–175Google Scholar
  5. Borsuk PA, Nagiec MM, Stepien PP, Bartnik E (1982) Gene 17:147–152Google Scholar
  6. Cihlar RL, Sypherd PS (1980) Nucleic Acids Res 8:793–804Google Scholar
  7. Denhardt DT (1966) Biochem Biophys Res Commun 23:641–646Google Scholar
  8. Free SJ, Rice PW, Metzenberger RL (1979) J Bacteriol 137:1219–1226Google Scholar
  9. Gaillardin CM, Charoey V, Heslot H (1973) Arch Microbiol 92:69–83Google Scholar
  10. Grunstein M, Hogness DS (1975) Proc Natl Acad Sci USA 72:3961–3965Google Scholar
  11. Lockington RA, Taylor GD, Winther M, Scazzocchio C, Davies RW (1982) Gene 20:135–137Google Scholar
  12. Maizels N (1976) Cell 9:431–438Google Scholar
  13. Orgryzdiak DM, Mortimer RK (1977) Genetics 87:621–632Google Scholar
  14. Petes TD, Hereford LM, Skryabin KG (1978) J Bacteriol 134:295–305Google Scholar
  15. Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251Google Scholar
  16. Rozek CE, Timberlake WE (1979) Nucleic Acids Res 8:1567–1578Google Scholar
  17. Southern EM (1975) J Mol Biol 98:503–517Google Scholar
  18. Specht CA, DiRusso CC, Novotny CP, Ullrich RC (1982) Anal Biochem 119:158–163Google Scholar
  19. Tabata S (1980) Eur J Biochem 110:107–114Google Scholar
  20. Van Heerikhuizen H, Ykema A, Klootwijk J, Gaillardin C, Ballas C, Fournier P (1986) Gene (in press)Google Scholar
  21. Verbeet PPL, Klootwijk J, Van Heerikhuizen H, Fontijn R, Vreugdenhil E, Planta R (1983) Gene 23:53–63Google Scholar
  22. Williamson DH, Fennell DJ (1975) Methods Cell Biol 12:335–351Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jeffrey J. Clare
    • 1
  • Lance S. Davidow
    • 2
  • David C. J. Gardner
    • 1
  • Stephen G. Oliver
    • 1
  1. 1.Department of Biochemistry and Applied Molecular BiologyUniversity of Manchester Institute of Science and TechnologyManchesterUK
  2. 2.Pfizer Central ResearchMolecular Genetics DivisionGrotonUSA

Personalised recommendations