Current Genetics

, Volume 10, Issue 6, pp 435–441

Cloned mitochondrial DNA from the zygomycete Absidia glauca promotes autonomous replication in Saccharomyces cerevisiae

  • Anke Burmester
  • Johannes Wöstemeyer
Original Articles

Summary

We have cloned fragments from mitochondrial and chromosomal DNA of the zygomycete Absidia glauca in Saccharomyces cerevisiae using the ARS selection vector YIp5. Though it has not been possible to select ARS elements from chromosomal DNA, we succeeded in isolating two clones of mitochondrial origin that support autonomous replication in bakers' yeast. DNA from these plasmids has been shown to hybridize with mitochondrial DNA from both mating types. Generation times of the transformed yeast strain in selective medium are around 20 h. In liquid minimal medium only 6% of the cells contain the plasmid; in complete medium a mitotic stability of 50% has been determined.

Key words

ARS MitochondrialDNA Absidia glauca 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez MI, Pelaez MI, Eslava AP (1980) Mol Gen Genet 179: 445–452Google Scholar
  2. Ballance DJ, Buxton FP, Turner G (1983) Biochem Biophys Res Commun 112:284–289Google Scholar
  3. Banks G (1983) Curr Genet 7:79–84Google Scholar
  4. Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523Google Scholar
  5. Botstein D, Falco SC, Steward SE, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW (1979) Gene 8:17–24Google Scholar
  6. Boyer HW, Roulland-Dussoix D (1969) J Mol Biol 41:459–472Google Scholar
  7. Broach JR, Li YY, Feldman J, Jayaram M, Abraham J, Nasmyth KA, Hicks JB (1983) Cold Spring Harbor Symp Quant Biol 47:1165–1173Google Scholar
  8. Case ME, Schweizer M, Kushner SR, Giles NH (1979) Proc Natl Acad Sci USA 76:5259–5263Google Scholar
  9. Celniker SE, Sweder K, Srienc F, Bailey JE, Campbell JL (1984) Mol Cell Biol 4:2455–2466Google Scholar
  10. Cihlar RL, Sypherd PS (1982) J Bacteriol 151:521–523Google Scholar
  11. Clewell DB, Helinski DR (1969) Proc Natl Acad Sci USA 62:1159–1166Google Scholar
  12. Cohen S, Chang ACY, Hsu L (1972) Proc Natl Acad Sci USA 69:2110–2114Google Scholar
  13. Colman A, Byers MJ, Primrose SB, Lyons A (1978) Eur J Biochem 91:303–310Google Scholar
  14. Dewar R, Katayama C, Sypherd PS, Cihlar RL (1985) J Bacteriol 162:438–440Google Scholar
  15. Eslava AP, Alvarez MI, Delbrück M (1975) Proc Natl Acad Sci USA 72:4076–4080Google Scholar
  16. Garber RC, Yoder OC (1983) Anal Biochem 135:416–422Google Scholar
  17. Geiser M, Döring HP, Wöstemeyer J, Behrens U, Tillmann E, Starlinger P (1980) Nucleic Acids Res 8:6175–6188Google Scholar
  18. Heeswijck R van, Roncero MIG (1984) Carlsberg Res Commun 49:691–702Google Scholar
  19. Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933Google Scholar
  20. Hsu WH, Magee PT, Magee BB, Reddy CA (1983) J Bacteriol 154:1033–1039Google Scholar
  21. Humphreys GO, Willshaw GA, Anderson ES (1975) Biochim Biophys Acta 383:457–463Google Scholar
  22. James FR, Gauger W (1982) Mycologia 74:744–751Google Scholar
  23. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p 431Google Scholar
  24. Morris DW, Noti JD, Osborne FA, Szalay AA (1981) DNA 1:27 to 36Google Scholar
  25. Panet A, van de Sande JH, Loewen PC, Khorana HG, Raae AJ, Lillehaug JR, Kleppe K (1973) Biochemistry 12:5045–5049Google Scholar
  26. Plempl M (1962) Planta 58:509–520Google Scholar
  27. Roth GE, Blanton HM, Hager LJ, Zakian VA (1983) Mol Cell Biol 3:1898–1908Google Scholar
  28. Sherman F, Fink GR, Lawrence CR (1972) Manual for a course: methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p 55Google Scholar
  29. Skatrud PL, Queener SW (1984) Curr Genet 8:155–163Google Scholar
  30. Stahl U, Lemke PA, Tudzynski P, Esser K (1980) Mol Gen Genet 178:639–646Google Scholar
  31. Southern EM (1975) J Mol Biol 98:503–517Google Scholar
  32. Stahl U, Tudzynski P, Kück U, Esser K (1982) Proc Natl Acad Sci USA 79:3641–3645Google Scholar
  33. Stinchcomb DT, Thomas M, Kelly J, Selker E, Davis EW (1980) Proc Natl Acad Sci USA 77:4559–4563Google Scholar
  34. Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039Google Scholar
  35. Struhl K (1983) Nature (London) 305:391–397Google Scholar
  36. Thikomirova LP, Kryukow VM, Strizhov NI, Bayev AA (1983) Mol Gen Genet 189:479–484Google Scholar
  37. Tschumper G, Carbon J (1980) Gene 10:157–166Google Scholar
  38. Tudzynski P, Esser K (1982) Curr Genet 6:153–158Google Scholar
  39. Vallet JM, Rochaix JD (1985) Curr Genet 9:321–324Google Scholar
  40. Werkman BA (1976) Arch Microbiol 109:209–213Google Scholar
  41. Wöstemeyer J (1985) Eur J Biochem 146:443–448Google Scholar
  42. Wurtz T, Jockusch H (1978) Mol Gen Genet 159:249–257Google Scholar
  43. Yelton MM, Timberlake WE, van den Hondel CAMJJ (1985) Proc Natl Acad Sci USA 82:834–838Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Anke Burmester
    • 1
  • Johannes Wöstemeyer
    • 1
  1. 1.Institut für Biochemie und Molekulare Biologie/BotanikTechnische UniversitätBerlin 10Germany

Personalised recommendations