Current Genetics

, Volume 3, Issue 1, pp 13–21 | Cite as

Mitochondrial DNA amplification in senescent cultures of Podospora anserina: Variability between the retained, amplified sequences

  • Léon Belcour
  • Odile Begel
  • Marie-Odile Mossé
  • Corinne Vierny
Original Articles


The non-nuclear DNA of a number of independent senescent cultures of Podospora anserina was extracted and studied. In all cases, a specific repetitive DNA (SEN-DNA) arranged in multimeric sets of circular molecules, was identified. Depending on the senescent culture, the SEN-DNA was found either in a band of about same density as the mitochondrial DNA from young mycelia (1.694 g/cm3) or in a band of higher density (1.699 g/cm3). Electron microscopy, restriction enzyme analysis and Southern hybridization experiments allowed us to establish that: (1) SEN-DNAs obtained from independent senescent cultures, both from the same strain and from different strains, can differ in the size of their monomer unit (from 2.5 to 6.3 kb). (2) All SEN-DNAs hybridize with mitochondrial DNA of a young culture and not with nuclear DNA. (3) These SEN-DNAs belong to two classes which hybridize with two non-overlapping regions of the mitochondrial chromosome.

Key words

Senescence Podospora Mitochondrial DNA DNA Amplification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belcour L, Beget O (1977) Mol Gen Genet 153:11–21Google Scholar
  2. Belcour L, Beget O (1978) Mol Gen Genet 163:113–123Google Scholar
  3. Belcour L, Beget O (1980) J Gen Microbiol 119:505–515Google Scholar
  4. Blanc H (1979) Thesis, ParisGoogle Scholar
  5. Blanc H, Dujon B (1980) Proc Natl Acad Sci USA 77:3942–3946Google Scholar
  6. Burgess RR, Travers AA (1971) Procedures in Nucleic Acid Research (Cantoni, GI, Davies DR (eds) 2:851–863Google Scholar
  7. Cummings DJ, Belcour L, Grandchamp C (1978) CR Acad Sci (Paris) 287:157–160Google Scholar
  8. Cummings DJ, Belcour L, Grandchamp C (1979a) Mol Gen Genet 171:239–250Google Scholar
  9. Cummings DJ, Belcour L, Grandchamp C (1979b) Mol Gen Genet 171:229–238Google Scholar
  10. Ephrussi B, Hottiguer H, Roman H (1955) Proc Natl Acad Sci USA 41:1065–1071Google Scholar
  11. Gaillard C, Strauss F, Bernardi G (1980) Nature 283:218–220Google Scholar
  12. Jamet-Vierny C, Begel O, Belcour L (1980) Cell 21:189–194Google Scholar
  13. Lazowska J, Slonimski PP (1976) Mol Gen Genet 146:61–78Google Scholar
  14. Mannella C, Goewert RR, Lambowitz AM (1979) Cell 18:1197–1207Google Scholar
  15. Marcou D (1961) Ann Sci Natur Botan 11:653–764Google Scholar
  16. Marcou D, Schecroun J (1959) CR Acad Sci (Paris) 248:280–283Google Scholar
  17. Rizet G (1953a) CR Acad Sci (Paris) 237:838–840Google Scholar
  18. Rizet G (1953b) CR Acad Sci (Paris) 237:1106–1109Google Scholar
  19. Rizet G (1957) CR Acad Sci (Paris) 244:663–665Google Scholar
  20. Slonimski PP, Lazowska J (1977) In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 77 “Proceeding of the Colloquium on Genetics and Biogenesis of Mitochondria.” De Gruyter, Berlin, p. 39Google Scholar
  21. Smith JR, Rubenstein I (1973a) J Gen Microbiol 76:297–304Google Scholar
  22. Southern EM (1975) J Mol Biol 98:503–517Google Scholar
  23. Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Mol Gen Genet 162:341–343Google Scholar
  24. Stahl U, Kück U, Tudzynski P, Esser K (1980) Mol Gen Genet 178:639–646Google Scholar
  25. Thuring RWJ, Sanders JPM, Borst P (1975) Analytical Biochem 66:213–220Google Scholar
  26. Williamson DJ, Fennell DJ (1975) In: DM Prescott (ed) Methods in cell biology vol XII Academic Press, New-York, p 355Google Scholar
  27. Zamaroczy M, Baldacci G, Bernardi G (1979) FEBS Lett 108:429–432Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Léon Belcour
    • 1
  • Odile Begel
    • 1
  • Marie-Odile Mossé
    • 1
  • Corinne Vierny
    • 1
  1. 1.Centre de Génétique Moléculaire, Centre National de la Recherche ScientifiqueGif-sur-YvetteFrance

Personalised recommendations