Current Genetics

, Volume 12, Issue 7, pp 519–526 | Cite as

A region in the yeast genome which favours multiple integration of DNA via homologous recombination

  • Stefan Hohmann
Original Articles


Integrative transformation of yeast with gapped DNA fragments results in single or multiple integration into the yeast genome via homologous recombination. A sequence of yeast DNA was found which favours multiple integration even when the strategy of gene replacement is used. This strategy by which the transformed DNA fragment replaces its chromosomal homologue rather than simply integrating into the genome usually occurs as a single exchange event. The described region is unique and lies ear a telomere about 5 kb proximal to the SUC4 locus on chromosome XIII. DNA from this region was used as a vehicle for the integration of different SUC genes coding for invertase. Most of the sucrose fermenting transformants isolated carried between two and seven copies of the SUC genes. These transformants overproduced invertase even though there was no selective pressure for high invertase activity in these experiments. I conclude that this region is highly recombinogenic and favours multiple integration of DNA fragments. This region could be used for stable multiple integration of heterologous genes into the yeast genome for over-production of the respective gene product.

Key words

Yeast transformation Multiple integration Enzyme overproduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beggs JD (1978) Nature 275:447–452Google Scholar
  2. Beggs JD (1981) Alfred Benzon Symp 16:383–390Google Scholar
  3. Bennetzen JL, Hall BD (1982) J Biol Chem 257:3018–3025Google Scholar
  4. Birnboim HC (1983) Methods Enzymol 100:243–255Google Scholar
  5. Bitter GA, Chen KK, Banks AR, Lai DH (1984) Proc Natl Acad Sci USA 81:5330–5334Google Scholar
  6. Blackburn EH, Szostak JW (1984) Ann Rev Biochem 53:163–194Google Scholar
  7. Bolivar F, Backman K (1979) Methods Enzymol 68:245–267Google Scholar
  8. Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stichcomb DT, Struhl K, Davis RW (1979) Gene 8:17–24Google Scholar
  9. Bull JH, Wootton JC (1984) Nature 310:701–704Google Scholar
  10. Carlson M, Botstein D (1982) Cell 28:145–154Google Scholar
  11. Carlson M, Botstein D (1983) Mol Cell Biol 3:351–359Google Scholar
  12. Carlson M, Celenza J, Eng FJ (1985) Mol Cell Biol 5:2894–2902Google Scholar
  13. Chan CSM, Tye BK (1983) Cell 33:563–573Google Scholar
  14. Chen CY, Hitzeman RA (1987) Nucleic Acids Res 15:643–660Google Scholar
  15. Fogel S, Welch JW (1982) Genetics 79:5342–5346Google Scholar
  16. Futcher AB, Cox BS (1984) J Bacteriol 157:283–290Google Scholar
  17. Goldstein A, Lampen JO (1975) Methods Enzymol 42: 504–511Google Scholar
  18. Grossmann MK, Zimmermann FK (1979) Mol Gen Genet 175: 223–229Google Scholar
  19. Hinnen A, Meyhack B (1982) Curr Top Microbiol Immunol 96: 101–117Google Scholar
  20. Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933Google Scholar
  21. Hitzeman RA, Clarke L, Carbon J (1980) J Biol Chem 255: 12073–12080Google Scholar
  22. Hitzeman RA, Leung DW, Perry JL, Kohr WJ, Levine HL, Goeddel DV (1983a) Science 219:620–625Google Scholar
  23. Hitzeman RA, Chen CY, Hagie FE, Patzer EJ, Liu CC, Estell DE, Miller JV, Yaffe A, Kleid DG, Levinson AD, Oppermann H (1983b) Nucleic Acids Res 11:2745–2762Google Scholar
  24. Hohmann S, Zimmermann FK (1986) Curr Genet 11:217–225Google Scholar
  25. Hohman S, Zimmermann FK (1986) Curr Genet 11: 217–225Google Scholar
  26. Kelly JM, Hynes MJ (1987) Curr Genet 12:21–31Google Scholar
  27. Messing J (1983) Methods Enzymol 101:20–77Google Scholar
  28. Murray AW, Szostak JW (1983) Nature 305:189–193Google Scholar
  29. Orr-Weaver TL, Szostak JW (1983) Mol Cell Biol 3:747–749Google Scholar
  30. Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Proc Natl Acad Sci USA 78:6354–6358Google Scholar
  31. Parent SA, Fenimore CM, Bostian KA (1985) Yeast 1:83–138Google Scholar
  32. Rigby PW, Dieckman M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251Google Scholar
  33. Rothstein RJ (1983) Methods Enzymol 101:202–211Google Scholar
  34. Sharp PM, Tuohy TMF, Mosurski KR (1986) Nucleic Acids Res 14:5125–5143Google Scholar
  35. Smith RA, Duncan MJ, Moir DT (1985) Science 229:1219–1224Google Scholar
  36. Stewart GG (ed) (1987) Biological research on industrial yeast, vol 2, fundamental aspects. CRC PressGoogle Scholar
  37. Stinchcomb DT, Thomas M, Kelly J, Selker E, Davis RW (1979) Proc Natl Acad Sci USA 77:4559–4563Google Scholar
  38. Tautz D, Renz M (1983) Anal Biochem 132:14–19Google Scholar
  39. Thim L, Hansen MT, Norris K, Hoegh J, Boel E, Forstrom J, Ammerer G, Fiil NP (1986) Proc Natl Acad Sci USA 83: 6766–6770Google Scholar
  40. Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD (1982) Nature 298:347–350Google Scholar
  41. Wahl GM, Stern M, Stark GR (1979) Proc Natl Acad Sci USA 76:3683–3687Google Scholar
  42. Wernars K, Goosen T, Wennekes LMJ, Visser J, Bos CJ, van den Broek HWJ, van Gorcom RFM, van den Hondel CAMJJ, Pouwels PH (1985) Curr Genet 9:361–368Google Scholar
  43. Zamenhoff S (1957) Methods Enzymol 3:696–704Google Scholar
  44. Zhu J, Contreras R, Fiers W (1986) Gene 50:225–237Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Stefan Hohmann
    • 1
  1. 1.Institut für Mikrobiologie, Technische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations