Current Genetics

, Volume 12, Issue 7, pp 497–501 | Cite as

Amplification of the yeast nuclear gene MRS3 confers suppression of a mitochondrial RNA splice defect

  • Thomas Söllner
  • Cornelia Schmidt
  • Carlo Schmelzer
Original Articles


The MRS3 gene cloned in the multicopy plasmid YEp13 suppresses the mitochondrial splice defect exerted by mutation M1301 in the group II intron bIl. In this article we report on the behavior of the MRS3 gene cloned in the integration vector pEMBLYi27 and in the CEN4-ARS vector YCp50. Transformation of mutant M1301 cells with these recombinant vectors produced transformants, the majority of which showed the original splice defect and contained the recombinant vectors in single or low copy; a minority, however, was splicing competent and showed exceptionally high copy numbers of the MRS3 gene. These latter transformants had either the pEMBLYi27/MRS3 sequence repeated at least 20 times in tandem at the chromosomal site of the MRS3 gene or they had the YCp50/MRS3 sequence established as a multicopy plasmid lacking the copy number control usually exerted by the CEN4 sequence in this plasmid.

Key words

Suppression by gene amplification RNA splicing Group II intron Yeast mitochondria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldari C, Cesareni G (1985) Gene 35:27–32Google Scholar
  2. Beggs JD (1978) Nature 275:104–109Google Scholar
  3. Bitoun R, Zamir A (1986) Mol Gen Genet 204:98–102Google Scholar
  4. Blackburn EH (1985) Trends Genet 1:8–12Google Scholar
  5. Blackburn EH, Sostak JW (1984) Annu Rev Biochem 53:163–194Google Scholar
  6. Broach JR, Strathern JN, Hicks J (1979) Gene 8:121–133Google Scholar
  7. Clarke L, Carbon J (1980) Nature 287:504–509Google Scholar
  8. Clarke L, Carbon J (1985) Annu Rev Gen 19:29–56Google Scholar
  9. Conde J, Fink GR (1976) Proc Natl Acad Sci USA 69:930–932Google Scholar
  10. Edlund T, Normak S (1981) Nature 292:269–271Google Scholar
  11. Fishman SE, Rosteck PR, Hersberger JR, Hersberger CL (1985) J Bacteriol 161:199–206Google Scholar
  12. Fogel S, Welch JW, Cathala G, Karin M (1983) Curr Genet 7:347–355Google Scholar
  13. Hieter P, Mann C, Synder M, Davies RW (1985) Cell 40:381–392Google Scholar
  14. Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933Google Scholar
  15. Hyrien O, Buttin G (1986) Trends Genet 2:275–276Google Scholar
  16. Kedes LH, Chang ACY, Houseman D, Cohen SN (1975) Nature 255:533–538Google Scholar
  17. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor New YorkGoogle Scholar
  18. Nasmyth K, Reed S (1980) Proc Natl Acad Sci USA 77:2119–2123Google Scholar
  19. Orr-Weaver TL, Szostak JE, Rothstein RJ (1981) Proc Natl Acad Sci USA 78:6354–6385Google Scholar
  20. Rigby PW, Dieckman M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251Google Scholar
  21. Schmelzer C, Schmidt C, May K, Schweyen RJ (1983) EMBO J 2:2047–2052Google Scholar
  22. Schmidt C, Söllner T, Schweyen RJ (1987) Mol Gen Genet 210:145–152Google Scholar
  23. Stark GR, Wahl GM (1984) Annu Rev Biochem 53:447–491Google Scholar
  24. Southern EM (1975) J Mol. Biol 98:503–517Google Scholar
  25. Stinchcomb DT, Mann C, Davis RW (1982) J Mol Biol 158: 157–179Google Scholar
  26. Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039Google Scholar
  27. Tlsty TD, Albertini AM, Miller JH (1984) Cell 37:217–224Google Scholar
  28. Walton JD, Paquin CE, Koneko K, Williamson VM (1986) Cell 46:857–863Google Scholar
  29. Winston F, Chumley F, Fink GR (1983) Recombinant DNA, part C. In: Wu R, Grossman L, Moldave K (eds) Methods. Enzymol 101:211–228Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Thomas Söllner
    • 1
  • Cornelia Schmidt
    • 1
  • Carlo Schmelzer
    • 1
  1. 1.Institut für Genetik und MikrobiologieUniversität MünchenMünchen 19Germany

Personalised recommendations