Skip to main content
Log in

Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

  1. 1.

    Growth of Vibrio succinogenes with nitrate as terminal electron acceptor was found to be a function of the following two catabolic reactions:

    $$HCO _2^ - + NO _3^ - + H^ + \to CO_2 + NO _2^ - + H_2 O$$
    ((a))
    $$3HCO _2^ - + NO _2^ - + 5H^ + \to 3CO_2 + NH _4^ + + 2H_2 O.$$
    ((b))

    The latter reaction (b) was responsible for growth with nitrite.

  2. 2.

    Either succinate or fumarate could serve as sole carbon source during growth with nitrate or nitrite. Biosynthesis from succinate proceeded via fumarate. The ATP requirement for cell synthesis from succinate was equal to that calculated earlier for growth with fumarate as carbon source and electron acceptor (Brounder et al. 1982).

  3. 3.

    The cell yield at infinite dilution rate (Y max) as obtained with chemostat cultures was 8.5g dry cells/mol formate with either nitrate or nitrite as acceptor. This value amounts to 60% of that measured earlier with fumarate as acceptor (Mell et al. 1982).

  4. 4.

    Membrane vesicles prepared from V. succinogenes catalyzed electron transport from H2 to nitrate. The reaction was dependent on the menaquinone present in the membrane.

  5. 5.

    Electron transport with H2 and nitrite was coupled to the phosphorylation of ADP. The P/H2 ratio with nitrite was 40% of that measured with fumarate as acceptor using the same preparation. The phosphorylation but not the electron transport was abolished by an uncoupling agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

TRIS:

tris (hydroxymethyl)aminomethane

MOPS:

3-(N-morpholino)propanesulfonate

MK:

menaquinone

FCCP:

carbonylcyanide-4-trifluoromethoxyphenylhydrazone

EDTA:

ethylene diamine tetraacetate

References

  • Bergmeyer HU (1974) Methoden der enzymatischen Analyse. Verlag Chemie, Weiheim

    Google Scholar 

  • Bronder M, Mell H, Stupperich E, Kröger A (1982) Biosynthetic pathways of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source. Arch Microbiol 131:216–223

    Google Scholar 

  • Cole JA (1978) The rapid accumulation of large quantities of ammonia during nitrite reduction by Escherichia coli. FEMS Microb Lett 4:327–329

    Google Scholar 

  • De Vries W, Niekus HG, Boellaard M, Stouthamer AH (1980) Growth yields and energy generation by Campylobacter sputorum subspecies bubulus during growth in continuous culture with different hydrogen acceptors. Arch Microbiol 124:221–227

    Google Scholar 

  • De Vries W, Niekus HG, van Berchum H, Stouthamer AH (1982) Electron transport-linked proton translocation at nitrite reduction in Campylobacter sputorum subspecies bubulus. Arch Microbiol 131:132–139

    Google Scholar 

  • Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol 117:61–66

    Google Scholar 

  • Hartley AM, Asai RJ (1963) Spectrophotometric determination of nitrate with 2,6-xylenol reagent. Analyt Chem 35:1207–1213

    Google Scholar 

  • Kröger A (1977) Phosphorylative electron transport with fumarate and nitrate as terminal hydrogen acceptors. In: Haddock BA, Hammilton WA (eds) Microbial energetics. University Press, Cambridge, pp 61–93

    Google Scholar 

  • Kröger A, Innerhofer A (1976) The function of menaquinone, covalently bound FAD and ironsulfur protein in the electron transport from formate to fumarate of Vibrio succinogenes. Eur J Biochem 69:487–495

    Google Scholar 

  • Kröger A, Winkler E (1981) Phosphorylative fumarate reduction in Vibrio succinogenes: Stoichiometry of ATP synthesis. Arch Microbiol 129:100–104

    Google Scholar 

  • Kröger A, Winkler E, Innerhofer A, Hackenberg H, Schägger H (1979) The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes. Eur J Biochem 94:465–475

    Google Scholar 

  • Kröger A, Dorrer E, Winkler E (1980) The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. Biochim Biophys Acta 589:118–136

    Google Scholar 

  • Liu MC, Peck HD (1981) The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase. J Biol Chem 256:13159–13164

    Google Scholar 

  • Mell H, Bronder M, Kröger A (1982) Cell yields of Vibrio succinogenes growing with formate and fumarate as sole carbon and energy source in chemostat culture. Arch Microbiol 131:224–228

    Google Scholar 

  • Motteram PA, McCarthy JE, Ferguson JB, Cole JA (1981) Energy conservation during the formate dependent reduction of nitrite by Escherichia coli. FEMS Microb Lett 12:317–320

    Google Scholar 

  • Niederman RA, Wolin MJ (1972) Requirement of succinate for the growth of Vibrio succinogenes. J Bacteriol 109:546–549

    Google Scholar 

  • Ohnishi T (1963) Oxidative Phosphorylation coupled with nitrate respiration with cell free extracts of Pseudomonas denitrificans. J Biochem 53:71–79

    Google Scholar 

  • Rider BF, Mellon MG (1946) Colorimetric determination of nitrite. Indust Engin Chem 18:96–98

    Google Scholar 

  • Steenkamp DJ, Peck HD (1981) Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans. J Biol Chem 256:5450–5458

    Google Scholar 

  • Stouthamer AH (1976) Biochemistry and genetics of nitrate reductase in bacteria. Adv Microbiol Physiol 14:315–375

    Google Scholar 

  • Tanner ACR, Badger S, Lai CH, Listgarten MA, Visconti RA, Socransky SS (1981) Wolinella gen. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov. and Eikenella corrodens from humans with peridontal disease. Intern J Sys Bacteriol 31:432–445

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conversation in chemotropic anaerobic bacteria. Bacteriol Rev 41:100–180

    Google Scholar 

  • Unden G, Kröger A (1982) Reconstitution in liposomes of the electrontransport chain catalyzing fumarate reduction by formate. Biochim Biophys Acta 682:258–263

    Google Scholar 

  • Unden G, Böcher R, Knecht J, Kröger A (1982) Hydrogenase from Vibrio succinogenes, a nickel protein. FEBS Lett 145:230–234

    Google Scholar 

  • Van Verseveld HW, Meijer EM, Stouthamer AH (1977) Energy conservation during nitrate respiration in Paracoccus denitrificans. Arch Microbiol 112:17–23

    Google Scholar 

  • Wolin MJ, Wolin EA, Jacobs NJ (1961) Cytochrome-producing anaerobic vibrio, Vibrio succinogenes Sp. n. J Bacteriol 81:911–917

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokranz, M., Katz, J., Schröder, I. et al. Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Arch. Microbiol. 135, 36–41 (1983). https://doi.org/10.1007/BF00419479

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419479

Key words

Navigation