Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Clones, order varieties, near unanimity functions and holes

  • 26 Accesses

  • 9 Citations

Abstract

A finite ordered set has an order preserving majority function if and only if it is a retract of a direct product of fences.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    K.Baker and A.Pixley (1975) Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems, Math Z. 43, 165–174.

  2. [2]

    J. Demetrovics, L. Hannák, and L. Rónyai (1984) Near unanimity functions and partial orderings, Proc. 14 Internat. Sympos. Multiple-valued Logic, Winnipeg, Man., IEEE, 52–56.

  3. [3]

    J.Demetrovics and L.Rónyai (1989) Algebraic properties of crowns and fences, Order 6, 91–100.

  4. [4]

    D.Lau (1978) Bestimmung der Ordnung maximaler Klasen von Funktionen der k-wertigen Logik, Z. Math. Logik u. Grundlagen d. Math. 24, 79–96.

  5. [5]

    E. Jawhari, D. Misane, and M. Penzet (1986) Retracts: graphs and ordered sets from the metric point of view, in Combinations and Ordered Sets (I. Rival, ed.), Contemporary Math. 57, 175–226.

  6. [6]

    V. V.Martynjuk (1960) Investigation of classes of functions in many-valued logics (Russian), Problemy Kibernetiki 3, 49–60, MR 23 # 3661.

  7. [7]

    P.Nevermann and I.Rival (1985) Holes in ordered sets, Graphs and Combinatorics 1, 339–350.

  8. [8]

    D. Misane (1984) Retracts absolus d'ensembles ordonnés et de graphes. Propriété du point fixe. Thèse de doctorat N1571, Lyon.

  9. [9]

    P.Nevermann and R.Wille (1984) The strong selection property and ordered sets of finite length, Alg. Univ. 18, 18–28.

  10. [10]

    A.Quilliot (1983) An application of the Helly property to the partially ordered sets, J. Combin. Th. A 35, 309–318.

  11. [11]

    I. G.Rosenberg (1980) Über die funktionale Vollständigkeit mehrwertigen Logiken, Rospr. CSAV Rada Math. Prir. Ved., Prague 80(4), 3–93.

  12. [12]

    G.Tardos (1986) A maximal clone of monotone operations which is not finitely generated Order 3, 211–218.

Download references

Author information

Additional information

The authors' research was supported by grants from the NSERC of Canada.

Communicated by M. Pouzet

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Quackenbush, R.W., Rival, I. & Rosenberg, I.G. Clones, order varieties, near unanimity functions and holes. Order 7, 239–247 (1990). https://doi.org/10.1007/BF00418652

Download citation

AMS subject classification (1980)

  • 06A10

Key words

  • Clone
  • hole
  • order variety