Contributions to Mineralogy and Petrology

, Volume 47, Issue 1, pp 41–62 | Cite as

O18 enriched ophiolitic metabasic rocks from E. Liguria (Italy), Pindos (Greece), and Troodos (Cyprus)

  • E. T. C. Spooner
  • R. D. Beckinsale
  • W. S. Fyfe
  • J. D. Smewing


Low grade hydrothermally metamorphosed ophiolitic basic rocks from E. Liguria (Italy), Pindos (Greece) and Troodos (Cyprus) are enriched in O18 relative to the oxygen isotope ratio of fresh basalt (6.0±0.5‰). The maximum observed δO18 value of +13.22‰ corresponds to a positive isotope shift of 7‰ Enrichments in Sr87 relative to Sr86 correlate with hydrothermal alteration. The δC13 values of secondary calcite from E. Liguria are positive, and fall in the range from +0.2% to +3.6‰

Since ophiolitic rocks are considered to be fragments of the oceanic crust and upper mantle, and since the secondary metamorphic assemblages were produced before mechanical emplacement, it is considered that the hydrothermal metamorphism which affected these rocks occurred in the sub-sea-floor environment. The isotope data are directly consistent with the hypothesis that the alteration was produced by interaction of the basaltic material with introduced sea water. Water: rock ratios were sufficiently large to produce the observed isotope shifts. In the Troodos ophiolite sequence δO18 values decrease steadily downwards and change to progressively larger depletions in the Sheeted Intrusive Complex. The trend of δO18 decrease correlates with the original direction of increasing temperature. The O18 depletions, which have also been observed for oceanic “greenstones” (Muehlenbachs and Clayton, 1972b), resulted from water/rock interaction at temperatures greater than the particular temperature range above which whole rock-water fractionations became less than the isotopic difference between fresh basalt and sea water.

Since this isotope geochemistry indicates that the water responsible for hydrothermal metamorphism was of sea water origin, the data support the more general hypothesis that convection of sea water within the upper 4–5 kms of the oceanic crust is a massive and active process at oceanic ridges. This process may be completely or partially responsible for (a.i.), the local scatter and low mean value of the conductive heat flux measured near ridges, (a.ii), the transfer of considerable quantities of heat from spreading oceanic ridges, (b) hydrothermal metamorphism, metasomatism and mineralization of oceanic crust, (c), the production of metal enriched, relatively reduced brines during sea water/basalt interaction, d), the high degree of scatter and low mean value of the compressional wave velocities of oceanic basement layer 2 and (e), the low natural remanent magnetization (NRM) intensity of the lower part of layer 2 and upper part of layer 3 of oceanic crust.


Oceanic Crust Sr86 Isotope Shift Isotope Geochemistry Oceanic Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbate, E., Sagri, M.: The eugeosynclinal sequences. In: Development of the Northern Apennines geosyncline, G. Sestini, ed. Sediment. Geol. 4, 251–340 (1970)Google Scholar
  2. Anderson, R. N.: Petrologic significance of low heat flow on the flanks of slow-spreading mid-ocean ridges. Geol. Soc. Am. Bull. 83, 2947–2956 (1972)Google Scholar
  3. Aubouin, J.: Geosynclines. Developments in geotectonics, vol.1, p. 43–77. Amsterdam: Elsevier 1965Google Scholar
  4. Bailey, E. B., McCallien, W. J.: Some aspects of the Steinmann trinity, mainly chemical. Quart. J. Geol. Soc. Lond. 116, 365–395 (1960)Google Scholar
  5. Bear, L. M.: The mineral resources and mining industry of Cyprus. Bull. geol. Surv. Cyprus 1, 208 p. (1963)Google Scholar
  6. Beckinsale, R. D., Freeman, N. J., Jackson, M. C., Powell, R. E., Young, W. A. P.: A 30 cm radius 90° sector double collecting mass spectrometer with a capacitor integrating detector for high precision isotopic analysis of carbon dioxide. Int. J. Mass Spectrom. and Ion Physics 12, 299–308 (1973)Google Scholar
  7. Bezzi, A., Piccardo, G. B.: Structural features of the Ligurian ophiolites: petrologic evidence for the “oceanic” floor of the Northern Apennines geosyncline; a contribution to the problem of the Alpine type Gabbro-peridotite associations. Mem. Soc. Geol. Ital. 10, 53–63 (1971)Google Scholar
  8. Bigazzi, G., Bonadona, F. P., Ferrara, G., Innocenti, F.: Fission track ages of zircons and apatites from North Apennine ophiolites. Fortschr. Mineral. 50, 51–53 (1972)Google Scholar
  9. Björnsson, S., Arnórsson, S., Tómasson, J.: Economic evaluation of Reykjanes thermal brine area, Iceland. Am. Assoc. Petrol. Geol. Bull. 56, 2380–2391 (1972)Google Scholar
  10. Bödvarsson, G.: Physical characteristics of natural heat resources in Iceland. Jokull 11, 29–38 (1961)Google Scholar
  11. Bödvarsson, G., Lowell, R. P.: Ocean-floor heat flow and the circulation of interstitial waters. J. Geophys. Res. 77, 4472–4475 (1972)Google Scholar
  12. Böstrom, K., Peterson, M. N. A., Joensuu, O., Fisher, P. E.: Aluminium-poor ferromanganoan sediments on active oceanic ridges. J. Geophys. Res. 72, 3261–3270 (1969)Google Scholar
  13. Browne, P. R. L., Ellis, A. J.: The Ohaki-Broadlands hydrothermal area, New Zealand: mineralogy and related geochemistry. Am. J. Sci. 269, 97–131 (1970)Google Scholar
  14. Christensen, N. I., Salisbury, M. H.: Sea-floor spreading, progressive alteration of Layer II basalts, and associated changes in seismic velocities. Earth Planet. Sci. Letters 15, 367–375 (1972)Google Scholar
  15. Christensen, N. I., Salisbury, M. H.: Velocities, elastic moduli and weathering-age relations for Pacific layer 2 basalts. Earth Planet. Sci. Letters 19, 461–470 (1973)Google Scholar
  16. Clayton, R. N., Friedman, I., Graf, D. O., Mayeda, T. K., Meets, W. F., Shrimp, N. F.: The origin of saline formation waters. I. Isotopic composition. J. Geophys. Res. 71, 3869–3883 (1966)Google Scholar
  17. Clayton, R. N., Mayeda, T. K.: The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 27, 43–52 (1963)Google Scholar
  18. Clayton, R. N., Muffler, L. J. P., White, D. E.: Oxygen isotope study of calcite and silicates of the River Ranch No. 1 Well, Salton Sea geothermal field, California. Am. J. Sci. 266, 968–979 (1968)Google Scholar
  19. Clayton, R. N., O'Neil, J. R., Mayeda, T. K.: Oxygen isotope exchange between quartz and water. J. Geophys. Res. 77, 3057–3067 (1972)Google Scholar
  20. Coleman, R. G.: Plate tectonic emplacement of upper mantle peridotites along continental edges. J. Geophys. Res. 76, 1212–1222 (1971)Google Scholar
  21. Constantinou, G., Govett, G. J. S.: Genesis of sulphide deposits, ochre and umber of Cyprus. Trans. Inst. Mining Met. (Sect. B: Appl. Earth Sci.) 81 B, 32–46 (1972)Google Scholar
  22. Constantinou, G., Govett, G. J. S.: Geology, geochemistry, and genesis of Cyprus sulfide deposits. Econ. Geol. 68, 843–858 (1973)Google Scholar
  23. Craig, H.: Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133–149 (1957)Google Scholar
  24. Craig, H.: The isotopic geochemistry of water and carbon in geothermal areas. Conference of nuclear geology in geothermal areas, Spoleto, Italy, p. 17–53 (1963)Google Scholar
  25. Dasch, E. J., Hedge, C. E., Dymond, J.: Effect of seawater interaction on the strontium isotope composition of deep-sea basalts. Earth Planet. Sci. Letters 19, 177–183 (1973)Google Scholar
  26. Decandia, J. A., Elter, P.: La “zona” ofiolitifera del Bracco nel settore compreso fra Levanto e la Val Graveglia (Appennino Ligure). 66° Congresso della Società Geologica Italiana, p. 37–64 (1972)Google Scholar
  27. Deffeyes, K. S.: The axial valley: a steady state feature of the terraine. In: Megatonics of continents and oceans, p. 194–222. New Brunswick: Rutgers Univ. Press 1972Google Scholar
  28. Degens, E. T., Ross, O. A., eds.: Hot brines and recent heavy metal deposits in the Red Sea. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  29. Deines, P., Gold, D. P.: The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochim. Cosmochim. Acta 37, 1709–1733 (1973)Google Scholar
  30. Dewey, J. F., Bird, J. M.: Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. J. Geophys. Res. 16, 3179–3206 (1971)Google Scholar
  31. Donaldson, I. G.: Temperature gradients in the upper layers of the Earth's crust due to convective water flows. J. Geophys. Res. 67, 3449–3459 (1962)Google Scholar
  32. Dymond, J., Corliss, J. B., Ross Heath, G., Field, C. W., Dasch, E. J., Veeh, H. H.: Origin of metalliferous sediments from the Pacific Ocean. Geol. Soc. Am. Bull. 84, 3355–3372 (1973)Google Scholar
  33. Elder, J. W.: Physical processes in geothermal areas. In: Terrestrial heat flow. Am. Geophys. Union Geophys. Mon. 8, 211–239 (1965)Google Scholar
  34. Elder, J. W.: Steady free convection in a porous medium heated from below. J. Fluid Mech. 27, 29–48 (1967)Google Scholar
  35. Ferguson, J., Lambert, I. B.: Volcanic exhalations and metal enrichments at Matupi Harbour, New Britain, T.P.N.G. Econ. Geol. 67, 25–37 (1972)Google Scholar
  36. Forester, R. W., Taylor, H. P., Jr.: Oxygen and hydrogen isotope data on the interaction of meteoric ground waters with a gabbro-diorite stock, San Juan Mountains, Colorado. Internat. Geol. Cong. 24th. Montreal 10, 254–263 (1972)Google Scholar
  37. Fox, P. J., Opdyke, N. D.: Geology of the oceanic crust: magnetic properties of oceanic crust. J. Geophys. Res. 78, 5139–5154 (1973)Google Scholar
  38. Galli, M., Bezzi, A., Piccardo, G. B., Cortesogno, L., Pedemonte, G. M.: Le ofioliti dell'Appennino Ligure: un frammento di crosta-mantello “oceanici” dell'antica tetide. 66° Congresso della Società Geologica Italiana, p. 1–36 (1972)Google Scholar
  39. Galli, M., Togliatti, V.: Ricerche petrografiche sulla formazione ofiolitica dell' Appennino Ligure. Il Rosso di Levanto — nuovo contributo. Ann. Mus. Civ. St. Nat. Genova 75, 359–381 (1965)Google Scholar
  40. Garlick, G. D.: Oxygen isotope fractionation in igneous rocks. Earth Planet. Sci. Letters 1, 361–368 (1966)Google Scholar
  41. Garlick, G. D.: Correlation between the O18/O16 and initial Sr87/Sr86 ratios of granitic rocks (abst). Trans. Am. Geoph. Union 49, 332 (1968)Google Scholar
  42. Garlick, G. D., Dymond, J. R.: Oxygen isotope exchange between volcanic materials and ocean water. Geol. Soc. Am. Bull. 81, 2137–2142 (1970)Google Scholar
  43. Gass, I. G.: The geology and mineral resources of the Dhali area. Mem. Geol. Surv. Cyprus 4, 1–116 (1960)Google Scholar
  44. Gass, I. G.: Is the Troodos Massif of Cyprus a fragment of Mesozoic ocean floor? Nature 220, 39–42 (1968)Google Scholar
  45. Gass, I. G., Masson-Smith, O.: The geology and gravity anomalies of the Troodos Massif, Cyprus. Phil. Trans. Roy. Soc. London Ser. A 255, 417–467 (1963)Google Scholar
  46. Gass, I. G., Smewing, J. D.: Intrusion, extrusion and metamorphism at constructive margins: evidence from the Troodos Massif, Cyprus. Nature 242, 26–29 (1973)Google Scholar
  47. Harland, W. B., Smith, A. G., Wilcock, B., eds.: The phanerozoic time scale. Geol. Soc. Lond. 120 S (1964)Google Scholar
  48. Hart, R. A.: A model for chemical exchange in the basalt-seawater system of oceanic Layer II. Can. J. Earth Sci. 10, 799–816 (1973)Google Scholar
  49. Hart, S. R.: Ocean floor basalts. Carnegie Inst. Wash. Yearbook (Dept. of Terrestrial Magnetism) 69, 388 (1970)Google Scholar
  50. Hart, S. R.: Sr isotopic composition of the oceanic crust. Carnegie Inst. Wash. Yearbook (Dept. of Terrestrial Magnetism) 71, 288–290 (1972)Google Scholar
  51. Hart, S. R., Erlank, A. J., Kable, E. J. D.: Sea floor basalt alteration: some chemical and Sr isotopic effects. Contr. Mineral and Petrol. 44, 219–230 (1974)Google Scholar
  52. Heirtzler, J. R., Le Pichon, X.: Crustal structure of the mid-ocean ridges. 3. Magnetic anomalies over the Mid-Atlantic ridge. J. Geophys. Bes. 70, 4013–4033 (1965)Google Scholar
  53. Hitchon, B., Friedman, I.: Geochemistry and origin of formation waters in the Western Canada sedimentary basin. I. Stable isotopes of hydrogen and oxygen. Geochim. Cosmochim. Acta 33, 1321–1349 (1969)Google Scholar
  54. Honnorez, J., Honnorez-Guerstein, B., Valette, J., Wauschkuhn, A.: Present day formation of an exhalative sulphide deposit at Vulcano (Tyrrhenian Sea), pt. II: active crystallisation of fumarolic sulphides in the volcanic sediments of the Baia di Levante. In: Ores in sediments, G. C. Amstutz and A. J. Bernard, eds. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  55. Hutchinson, R. W., Searle, D. L.: Stratabound pyrite deposits in Cyprus and relations to other sulphide ores. Soc. Mining Geol. Japan, Spec. Issue 3, 198–205 (1971)Google Scholar
  56. Hyndman, R. D., Rankin, S. J.: The Mid-Atlantic Ridge near 45° N XVII: heat flow measurements. Can. J. Earth Sci. 9, 664 (1972)Google Scholar
  57. Hynes, A. J., Nisbet, E. G., Gilbert Smith, A., Welland, M. J. P., Rex, D. C.: Spreading and emplacement ages of some ophiolites in the Othris region (eastern central Greece). Z. Deutsch. Geol. Ges. 123, 455–468 (1972)Google Scholar
  58. Javoy, M.: Thèse de Doctorat d'Etat es Sciences Physiques, Faculté des Sciences de Paris (1970)Google Scholar
  59. Kharaka, Y. K., Berry, F. A. F., Friedman, I.: Isotopic composition of oil-field brines from Kettleman North Dome, California, and their geological implications. Geochim. Cosmochim. Acta 37, 1899–1908 (1973)Google Scholar
  60. Langseth, M. G., Herzen, R. P. Von: Heat flow through the floor of the world oceans. In: The sea, A. E. Maxwell, ed., vol. 4, part 1, p. 299–352. New York: Wiley Interscience 1970Google Scholar
  61. Langseth, M. G., Le Pichon, X., Ewing, M.: Crustal structure of the mid-ocean ridges. 5. Heat flow through the Atlantic ocean floor and convection currents. J. Geophys. Res. 71, 5321–5355 (1966)Google Scholar
  62. Le Pichon, X., Langseth, M. G.: Heat flow from mid-ocean ridges and sea-floor spreading. Tectonophysics 8, 319–444 (1969)Google Scholar
  63. Lister, C. R. B.: On the thermal balance of a mid-ocean ridge. Geophys. J. 26, 515–535 (1972)Google Scholar
  64. Loncarevic, B. D., Mason, C. S., Matthews, D. H.: Mid-Atlantic ridge near 45° N. I. The median valley. Can. J. Earth Sci. 3, 327–349 (1966)Google Scholar
  65. Lort, J. M., Matthews, D. M.: Seismic velocities measured in rooks of the Troodos igneous complex. Geophys. J. 27, 383–392 (1972)Google Scholar
  66. Mantis, M.: Upper Cretaceous-Tertiary foraminiferal zones in Cyprus. Epitiris, Cyprus Research Centre 3, 227–241 (1970)Google Scholar
  67. Mantis, M.: Palaeontological evidence defining the age of the Troodos pillow lava series in Cyprus. Kypriakos Logos 3, 202–208 (1971)Google Scholar
  68. Maynard, G. L.: Crustal Layer of seismic velocity 6.9–7.6 kilometres per second under the deep oceans. Science 168, 120–121 (1970)Google Scholar
  69. McKenzie, D. P.: Some remarks on heat flow and gravity anomalies. J. Geophys. Res. 72, 6261–6273 (1967)Google Scholar
  70. McKenzie, D. P., Sclater, J. G.: Heat flow in the eastern Pacific and sea-floor spreading. Bull. Vulcanol. 33-1, 101–118 (1969)Google Scholar
  71. Menzies, M.: Mineralogy and partial melt textures within an ultramafic-mafic body, Greece. Contr. Mineral. and Petrol. 42, 273–285 (1973)Google Scholar
  72. Montigny, R., Bougault, H., Bottinga, Y., Allègre, C. J.: Trace element geochemistry and genesis of the Pindos ophiolite suite. Geochim. Cosmochim. Acta 37, 2135–2147 (1973)Google Scholar
  73. Montigny, R., Javoy, M., Allègre, C. J.: Sr87/Sr86 and O18/O16 ratios in the Pindos ophiolite complex, Greece. Abstracts with Programmes (Geol. Soc. Am.) 2, 627–628 (1970)Google Scholar
  74. Moores, E. M.: Petrology and structure of the Vourinos ophiolite complex of northern Greece. Geol. Soc. Am. Spec. Papers 1969, 118Google Scholar
  75. Moores, E. M., Vine, F. J.: The Troodos Massif, Cyprus and other ophiolites as oceanic crust: evaluation and implications. Phil. Trans. Eoy. Soc. London, Ser. A 268, 443–466 (1971)Google Scholar
  76. Muehlenbachs, K., Anderson, A. T., Jr., Sigvaldason, G. E.: Low-O18basalts from Iceland. Geochim. Cosmochim. Acta 38, 577–588 (1974)Google Scholar
  77. Muehlenbachs, K., Clayton, R. N.: Oxygen isotope studies of fresh and weathered submarine basalts. Can. J. Earth Sci. 9, 172–184 (1972a)Google Scholar
  78. Muehlenbachs, K., Clayton, R. N.: Oxygen isotope geochemistry of submarine greenstones. Can. J. Earth Sci. 9, 471–478 (1972b)Google Scholar
  79. Nicolas, A., Jackson, E. O.: Répartition en deux provinces des péridotites des chaînes alpines logeant la Mediteranée: implications géotectoniques. Schweiz. Min. Petrogr. Mitt. 52, 479–495 (1972)Google Scholar
  80. Ohmoto, E.: Systematics of sulfur and carbon isotopes in hydrothermal ore depositis. Econ. Geol. 67, 551–578 (1972)Google Scholar
  81. O'Neil, J. R., Silberman, M. L., Fabbi, B. P., Chesterman, C. W.: Stable isotope and chemical relations during mineralization in the Bodie mining district, Mono County, California. Econ. Geol. 68, 765–784 (1973)Google Scholar
  82. Palmason, G.: On heat flow in Iceland in relation to the Mid-Atlantic ridge. In: Iceland and mid-ocean ridges, S. Björnsson, ed. Soc. Sci. Islandica 38, 111–127 (1967)Google Scholar
  83. Parker, R. L., Oldenburg, D. W.: Thermal model of ocean ridges. Nature 242, 137–139 (1973)Google Scholar
  84. Parrot, J.-F.: Etude d'une coupe de référence dans le cortège ophiolitique du Pinde septentrional (Grèce): la vallée de l'Aspropotamos. Cah. ORSTOM, sér. Geol. I, 2, 35–59 (1969)Google Scholar
  85. Passerini, P.: Rapporti fra le ofioliti e la formazioni sedimentarie fra Piacenza e il Mare Tirreno. Boll. Soc. Geol. Ital. 84, 92–176 (1965)Google Scholar
  86. Peterman, Z. E., Coleman, R. G., Hildreth, R. A.: Sr87/Sr86 in mafic rocks of the Troodos massif, Cyprus. U.S. Geol. Surv. Profess. Papers 750-D, 157–161 (1971)Google Scholar
  87. Peterman, Z. E., Hedge, C. E., Tourtelot, H. A.: Isotopic composition of strontium in sea water throughout Phanerozoic time. Geochim. Cosmochim. Acta 34, 105–120 (1970)Google Scholar
  88. Peterson, J. J., Fox, P. J., Schreiber, E.: Newfoundland ophiolites and the geology of the oceanic layer. Nature 247, 194–196 (1974)Google Scholar
  89. Pineau, F., Javoy, M., Allègre, C. J.: Etude systématique des isotopes de l'oxygéne, du carbone et du strontium dans les carbonatites. Geochim. Cosmochim. Acta 37, 2363–2377 (1973)Google Scholar
  90. Pucheldt, H.: Recent iron sediment formation at the Kameni islands, Santorini (Greece). In: Ores in sediments, G. C. Amstutz and A. J. Bernard, eds., p. 227–245. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  91. Raitt, R. W.: The crustal rocks. In: The sea, M. N. Hill, ed., vol. 3, p. 85–100. New York: Wiley Interscience 1963Google Scholar
  92. Robertson, A. H. F., Hudson, J. D.: Cyprus umbers; chemical precipitates on a Tethyan ocean ridge. Earth Planet. Sci. Letters 18, 93–101 (1973)Google Scholar
  93. Sayles, F. L., Bischoff, J. L.: Ferromanganoan sediments in the equatorial East Pacific. Earth Planet. Sci. Letters 19, 330–336 (1973)Google Scholar
  94. Schwarcz, H. P.: The stable isotopes of Carbon. In: Handbook of geochemistry, K. H. Wedepohl, ed., p. 6B1–6B15. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  95. Sclater, J. G., Francheteau, J.: The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the Earth. Geophys. J. 20, 509–542 (1970)Google Scholar
  96. Searle, D. L.: Mode of occurrence of the cupriferous pyrite deposits in Cyprus. Trans. Inst. Mining Met. (Sect. B: Appl. Earth Sci.) 81 B, 189–197 (1972)Google Scholar
  97. Sheppard, S. M. F., Dawson, J. B.: C13/C12 and D/H isotope variations in “primary igneous carbonatites”. Fortschr. Mineral. 50, 128–129 (1972)Google Scholar
  98. Sheppard, S. M. F., Nielsen, R. L., Taylor, H. P., Jr.: Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Econ. Geol. 64, 755–777 (1969)Google Scholar
  99. Sheppard, S. M. F., Nielsen, R. L., Taylor, H. P., Jr.: Hydrogen and oxygen isotope ratios in minerals from porphyry copper deposits. Econ. Geol. 66, 515–542 (1971)Google Scholar
  100. Sheppard, S. M. F., Taylor, H. P., Jr.: Hydrogen and oxygen isotope evidence for the origins of water in the Boulder batholith and the Butte ore deposits, Montana. (Abstract). Econ. Geol. 68, 1209–1210 (1973)Google Scholar
  101. Sleep, N. H.: Sensitivity of heat flow and gravity to the mechanism of sea-floor spreading. J. Geophys. Bes. 74, 542–549 (1969)Google Scholar
  102. Smith, A. G., Briden, J. G., Drewry, G. E.: Phanerozoic world maps. In: Organisms and continents through time. Special Papers in Palaeontology 12, 1–42 (1973)Google Scholar
  103. Spooner, E. T. C.: Sub-sea-floor metamorphism, heat and mass transfer; an additional comment. Contr. Mineral. and Petrol. 45, 169–173 (1974)Google Scholar
  104. Spooner, E. T. C., Beckinsale, R. D., Durham, J. J., Fyfe, W. S., Shackleton, N. J.: The carbon and oxygen isotopic geochemistry of the ophiolitic rocks of E. Liguria, Italy. Abstracts of: Geochronology and Isotope Geology 9 (1973)Google Scholar
  105. Spooner, E. T. C., Fyfe, W. S.: Sub-sea-floor metamorphism, heat and mass transfer. Contr. Mineral. and Petrol. 42, 287–304 (1973)Google Scholar
  106. Stanton, R. L., Baas Becking, L. G. M.: The formation and accumulation of sedimentary sulphides in seaboard volcanic environments. Koninkl. Ned. Akad. Wetenschappen Proc. Ser. B 65, 236–243 (1962)Google Scholar
  107. Steinmann, G.: Die ophiolitischen Zonen in den mediterranen Kettengebirgen. XlVe Cong. Int. Géol. (Madrid), C. r. fasc. 2, 637–668 (1927)Google Scholar
  108. Studt, F. E., Thompson, G. E. K.: Geothermal heat flow in the North Island of New Zealand. N.Z.J. Geol. Geophys. 12, 673–683 (1969)Google Scholar
  109. Sutton, G. H., Maynard, G. L., Hussong, D. M.: Widespread occurrence of a high-velocity basal layer in the Pacific Crust found with repetitive sources and sonobouys. In: The structure and physical properties of the earth's crust. J. G. Heacock, ed. Geophys. Monogr. Ser. 14, 193–210 (1971)Google Scholar
  110. Talwani, M., Windish, C. C., Langseth, M. G., Jr.: Reykjanes ridge crest: a detailed geophysical study. J. Geophys. Res. 76, 473–517 (1971)Google Scholar
  111. Taylor, H. P., Jr.: Oxygen isotope studies of hydrothermal mineral deposits. In: Geochemistry of hydrothermal ore deposits, H. L. Barnes, ed., p. 109–142. New York: Holt, Rinehart & Winston 1967Google Scholar
  112. Taylor, H. P., Jr.: The oxygen isotope geochemistry of igneous rocks. Contr. Mineral. and Petrol. 19, 1–71 (1968)Google Scholar
  113. Taylor, H. P., Jr.: Oxygen isotope evidence for large-scale interaction between meteoric ground waters and tertiary granodiorite intrusions, Western Cascade range, Oregon. J. Geophys. Res. 76, 7855–7874 (1971)Google Scholar
  114. Taylor, H. P., Jr.: O18/O16 evidence for meteoric-hydrothermal alteration and ore deposition in the Tonopah, Comstock lode and Goldfield mining districts, Nevada. Econ. Geol. 68, 747–764 (1973)Google Scholar
  115. Taylor, H. P., Jr., Epstein, S.: O18/O16 ratios in rocks and coexisting minerals of the Skaergaard intrusion, E. Greenland. J. Petrol. 4, 51–74 (1963)Google Scholar
  116. Taylor, H. P., Jr., Forester, R. W.: Low-O18 igneous rocks from the intrusive complexes of Skye, Mull and Ardnamurchan, western Scotland. J. Petrol. 12, 465–497 (1971)Google Scholar
  117. Thurston, D. R.: Studies on bedded cherts. Contr. Mineral. and Petrol. 36, 329–334 (1972)Google Scholar
  118. Tómasson, J., Kristmannsdóttir, H.: High temperature alteration minerals and thermal brines, Reykjanes, Iceland. Contr. Mineral. and Petrol. 36, 123–134 (1972)Google Scholar
  119. Vine, F. J.: Magnetic anomalies associated with mid-ocean ridges. In: The history of the Earth's crust, P. A. Phinney, ed., p. 73–89. Princeton, N.J.: Princeton University Press 1968Google Scholar
  120. Von der Borch, C. C., Nesteroff, W. D., Galehouse, J. S.: Iron-rich sediments cored during Leg 8 of the Deep Sea Drilling Project. In: Initial reports of the Deep Sea Drilling Project, vol. VIII, p. 829–833. Washington, D.C.: U.S. Govt. Printing Office 1971Google Scholar
  121. Von der Borch, C. C., Rex, R. W.: Amorphous iron oxide precipitates in sediments cored during Leg 5, Deep Sea Drilling Project. In: Initial reports of the Deep Sea Drilling Project, vol. V, p. 541–544. Washington, D.C.: U.S. Govt. Printing Office 1970Google Scholar
  122. Wenner, D. B., Taylor, H. P., Jr.: Temperatures of serpentinization of ultramafic rocks based on O18/O16 fractionation between coexisting serpentine and magnetite. Contr. Mineral. and Petrol. 32, 165–185 (1971)Google Scholar
  123. White, D. E.: Environment of generation of some base-metal ore deposits. Econ. Geol. 63, 301–335 (1968)Google Scholar
  124. Wilson, R. A. M.: The geology of the Xeros-Troodos area. Mem. Geol. Surv. Cyprus 1, 1–135 (1959)Google Scholar
  125. Wooding, R. A.: Convection in a saturated porous medium at large Rayleigh numbers and Peclet number. J. Fluid Mech. 15, 527–544 (1963)Google Scholar
  126. Zelenov, K. K.: Underwater volcanism and its role in the formation of sediments. Tr. Geol. Inst. Akad. Nauk S.S.S.R. 81 (1963)Google Scholar
  127. Zelenov, K. K.: Iron and manganese in exhalations from the submarine volcano of Banu Wuhu (Indonesia). Dokl. Akad. Nauk S.S.S.R. 155 (6), 1317–1320 (1964)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • E. T. C. Spooner
    • 1
  • R. D. Beckinsale
    • 2
  • W. S. Fyfe
    • 3
  • J. D. Smewing
    • 4
  1. 1.Department of Geology and MineralogyOxfordEngland
  2. 2.AWRE (Aldermaston), detached from the Institute of Geological SciencesLondonEngland
  3. 3.Department of GeologyThe University of Western OntarioLondon 72Canada
  4. 4.Department of Earth SciencesThe Open UniversityBletchleyEngland

Personalised recommendations