Diabetologia

, Volume 39, Issue 6, pp 621–631 | Cite as

Dietary fats and insulin action

  • L. H. Storlien
  • L. A. Baur
  • A. D. Kriketos
  • D. A. Pan
  • G. J. Cooney
  • A. B. Jenkins
  • G. D. Calvert
  • L. V. Campbell
Review

Abbreviations

NIDDM

non-insulin-dependent diabetes mellitus

n-3 fatty acids

omega-3 fatty acids

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Himsworth HP (1935) The dietetic factor determining the glucose tolerance and sensitivity to insulin of healthy men. Clin Sci 2: 67–94Google Scholar
  2. 2.
    Himsworth HP, Kerr RB (1939) Insulin-sensitive and insulin-insensitive types of diabetes mellitus. Clin Sci 41: 119–152Google Scholar
  3. 3.
    Brunzell JD, Lerner RL, Hazzard WR, Porte D, Bierman EL (1971) Improved glucose tolerance with high carbohydrate feeding in mild diabetes. N Engl J Med 284: 521–524PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson JW, Herman RH, Zakim D (1973) Effect of high glucose and high sucrose diets on glucose tolerance of normal men. Am J Clin Nutr 26: 600–607PubMedGoogle Scholar
  5. 5.
    Anderson JW (1977) Effect of carbohydrate restriction and high carbohydrate diets on men with chemical diabetes. Am J Clin Nutr 30: 402–408PubMedGoogle Scholar
  6. 6.
    Lavau M, Susini C (1975) [U-14C]glucose metabolism in vivo in rats rendered obese by a high fat diet. J Lipid Res 16: 134–142PubMedGoogle Scholar
  7. 7.
    Susini C, Lavau M (1978) In-vitro and in-vivo responsiveness of muscle and adipose tissue to insulin in rats rendered obese by a high-fat diet. Diabetes 27: 114–120PubMedCrossRefGoogle Scholar
  8. 8.
    Grundleger ML, Thenen SW (1982) Decreased insulin binding, glucose transport, and glucose metabolism in soleus muscle of rats fed a high fat diet. Diabetes 31: 232–237PubMedCrossRefGoogle Scholar
  9. 9.
    Bringolf M, Zaragoza N, Rivier D, Felber J-P (1972) Studies on the metabolic effects induced in the rat by a high-fat diet. Inhibition of pyruvate metabolism in diaphragm in vitro and its relation to the oxidation of fatty acids. Eur J Biochem 26: 360–367PubMedCrossRefGoogle Scholar
  10. 10.
    Schindler C, Felber J-P (1986) Study on the effect of high fat diet on diaphragm and liver glycogen and glycerides in the rat. Horm Metab Res 18: 91–93PubMedCrossRefGoogle Scholar
  11. 11.
    Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle, its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet I: 785–789CrossRefGoogle Scholar
  12. 12.
    Randle PJ, Kerbey AL, Espinal J (1988) Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diab Metab Rev 4: 623–638CrossRefGoogle Scholar
  13. 13.
    Bryson JM, Cooney GJ, Wensley VR et al. (1995) High-fat feeding alters the response of rat PDH complex to acute changes in glucose and insulin. Am J Physiol 268:E752–E757PubMedGoogle Scholar
  14. 14.
    Nagy LJ, Grunberger G (1990) High-fat feeding induces tissue-specific alteration in proportion of activated insulin receptors in rats. Acta Endocrinol Copenh 122: 361–368PubMedGoogle Scholar
  15. 15.
    Fickova M, Hubert P, Klimes I et al. (1994) Dietary fish oil and olive oil improve the liver insulin receptor tyrosine kinase activity in high sucrose fed rats. Endocrine Regulation 28: 187–197Google Scholar
  16. 16.
    Leturque A, Postic C, Ferre P, Girard J (1991) Nutritional regulation of glucose transporter in muscle and adipose tissue of weaned rats. Am J Physiol 260:E588-E593PubMedGoogle Scholar
  17. 17.
    Kahn BB, Pedersen O (1993) Suppression of GLUT4 expression in skeletal muscle of rats that are obese from high fat feeding but not from high carbohydrate feeding or genetic obesity. Endocrinology 132: 13–22PubMedGoogle Scholar
  18. 18.
    Hedeskov CJ, Capito K, Islin H, Hansen SE, Thams P (1992) Long-term fat-feeding-induced insulin resistance in normal NMRI mice: postreceptor changes of liver, muscle and adipose tissue metabolism resembling those of type 2 diabetes. Acta Diabetol 29: 14–19PubMedCrossRefGoogle Scholar
  19. 19.
    Storlien LH, James DE, Burleigh KM, Chisholm DJ, Kraegen EW (1986) Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. Am J Physiol 251:E576-E583PubMedGoogle Scholar
  20. 20.
    Kraegen EW, James DE, Storlien LH, Burleigh KM, Chisholm DJ (1986) In vivo insulin resistance in individual peripheral tissues of the high fat fed rat:assessment by euglycaemic clamp plus deoxyglucose administration. Diabetelogia 29: 192–198CrossRefGoogle Scholar
  21. 21.
    Jenkins AB, Furler SM, Kraegen EW (1986) 2-deoxy-glucose metabolism in individual tissues of the rat in vivo. Int J Biochem 18: 311–318PubMedCrossRefGoogle Scholar
  22. 22.
    Kraegen EW, Clark PW, Jenkins AB, Daley EA, Chisholm DJ, Storlien LH (1991) Development of muscle insulin resistance after liver insulin resistance in high-fat fed rats. Diabetes 40: 1397–1403PubMedCrossRefGoogle Scholar
  23. 23.
    Issad T, Coup C, Pastor-Anglada M, Ferr P, Girard J (1988) Development of insulin-sensitivity at weaning in the rat. Role of the nutritional transition. Biochem J 251: 685–690PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Storlien LH, Kraegen EW, Chisholm DJ, Ford GL, Bruce DG, Pascoe WS (1987) Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 237: 885–888PubMedCrossRefGoogle Scholar
  25. 25.
    Storlien LH, Jenkins AB, Chisholm DJ, Pascoe WS, Khouri S, Kraegen EW (1991) Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and Ω-3 fatty acids in muscle phospholipids. Diabetes 40: 280–289PubMedCrossRefGoogle Scholar
  26. 26.
    Wong SH, Nestel PJ, Trimble RP, Storer GB, Illman RJ, Topping DL (1984) The adaptive effects of dietary fish and safflower oil on lipid and lipoprotein metabolism in perfused rat liver. Biochim Biophys Acta 792: 103–109PubMedCrossRefGoogle Scholar
  27. 27.
    Wake S, Sowden J, Storlien LH, James DE, Clark P (1991) Effects of exercise training and dietary manipulation on insulin-regulatable glucose-transporter mRNA in rat muscle. Diabetes 40: 275–279PubMedCrossRefGoogle Scholar
  28. 28.
    Ikemoto S, Thompson KS, Takahashi M, Itakura H, Lane MD, Ezaki O (1995) High fat diet-induced hyperglycemia: prevention by low level expression of a glucose transporter (GLUT4) minigene in transgenic mice. Proc Natl Acad Sci USA 92: 3096–3099PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Rosholt MN, King PA, Horton ES (1994) High-fat diet reduces glucose transporter responses to both insulin and exercise. Am J Physiol 266:R95–R101PubMedGoogle Scholar
  30. 30.
    Opara EC, Garfinkel M, Hubbard VS, Burch WM, Akwari OE (1994) Effect of fatty acids on insulin release: role of chain length and degree of unsaturation. Am J Physiol 266:E635–E639PubMedGoogle Scholar
  31. 31.
    Storlien LH, Borkman M, Jenkins AB, Campbell LV (1991) Diet and in vivo insulin action: of rats and man. Diabetes Nutr Metab 4: 227–240Google Scholar
  32. 32.
    Kolterman OG, Greenfield M, Reaven GM, Saekow M, Olefsky JM (1979) Effect of a high carbohydrate diet on insulin binding to adipocytes and on insulin action in man. Diabetes 28: 731–736PubMedCrossRefGoogle Scholar
  33. 33.
    Beck-Neilsen H, Pederson O, Schwartz Sorensen N (1978) Effects of diet on the cellular insulin binding and insulin sensitivity in young healthy subjects. Diabetologia 15: 289–296CrossRefGoogle Scholar
  34. 34.
    Borkman M, Campbell LV, Chisholm DJ, Storlien LH (1991) High-carbohydrate low-fat diets do not enhance insulin sensitivity in normal subjects. J Clin Endocrinol Metab 72: 432–437PubMedCrossRefGoogle Scholar
  35. 35.
    HjØllund E, Pedersen O, Richelsen B, Beck-Neilsen H, Schwartz Sorensen N (1983) Increased insulin binding to adipocytes and monocytes and insulin sensitivity of glucose transport and metabolism in adipocytes from non-insulin-dependent diabetics after a low-fat/high-fiber diet. Metabolism 32: 1067–1075PubMedCrossRefGoogle Scholar
  36. 36.
    Chen M, Bergman RN, Porte D (1988) Insulin resistance and B-cell dysfunction in aging: the importance of dietary carbohydrate. J Clin Endocrinol Metab 67: 951–957CrossRefPubMedGoogle Scholar
  37. 37.
    Swinburn BA, Boyce VL, Bergman RN, Howard BV, Bogardus C (1991) Deterioration in carbohydrate metabolism and lipoprotein changes induced by modern, high fat diet in Pima Indians and Caucasians. J Clin Endocrinol Metab 73: 156–165PubMedCrossRefGoogle Scholar
  38. 38.
    Parillo M, Rivellese AA, Ciardullo AV et al. (1992) A high-monounsaturated-fat/low-carbohydrate diet improves peripheral insulin sensitivity in non-insulin-dependent diabetic patients. Metabolism 41: 1373–1378PubMedCrossRefGoogle Scholar
  39. 39.
    Popp-Snijders C, Schouten JA, Heine RJ, van der Meer J, van der Veen EA (1987) Dietary supplementation of omega-3 polyunsaturated fatty acids improves insulin sensitivity in non-insulin-dependent diabetes. Diabetes Res 4: 141–147PubMedGoogle Scholar
  40. 40.
    Fasching P, Ratheiser K, Waldhausl W et al. (1991) Metabolic effects of fish-oil supplementation in patients with impaired glucose tolerance. Diabetes 40: 583–589PubMedCrossRefGoogle Scholar
  41. 41.
    Glauber HS, Wallace P, Griver K, Brechtel G (1988) Adverse metabolic effects of omega-3 fatty acids in non-insulin-dependent diabetes mellitus. Ann Intern Med 108: 663–668PubMedCrossRefGoogle Scholar
  42. 42.
    Borkman M, Chisholm D, Furler S et al. (1989) Effects of fish oil supplementation on glucose and lipid metabolism in NIDDM. Diabetes 38: 1314–1319PubMedCrossRefGoogle Scholar
  43. 43.
    Heine RJ, Mulder C, Popp-Snijders C, van der Meer J, van der Veen EA (1989) Linoleic-acid-enriched diet: long term effects on serum lipoprotein and apolipoprotein concentrations and insulin sensitivity in noninsulin-dependent diabetic patients. Am J Clin Nutr 49: 448–456PubMedGoogle Scholar
  44. 44.
    Lovejoy J, DiGirolamo M (1992) Habitual dietary intake and insulin sensitivity in lean and obese adults. Am J Clin Nutr 55: 1174–1179PubMedGoogle Scholar
  45. 45.
    Parker DR, Weiss ST, Troisi R, Cassano PA, Vokonas PS, Landsberg L (1993) Relationship of dietary saturated fatty acids and body habitus to serum insulin concentration: the Normative Aging Study. Am J Clin Nutr 58: 129–136PubMedGoogle Scholar
  46. 46.
    Mayer EJ, Newman B Jr, Selby JV (1993) Usual dietary fat intake and insulin concentrations in healthy women twins. Diabetes Care 16: 1459–1469PubMedCrossRefGoogle Scholar
  47. 47.
    Kraegen EW, Storlien LH, Jenkins AB, James DE (1989) Chronic exercise compensates for insulin resistance induced by a high-fat diet in rats. Am J Physiol 256:E242–E249PubMedGoogle Scholar
  48. 48.
    Marshall JA, Hamman RF, Baxter J (1991) High-fat, low-carbohydrate diet and the etiology of non-insulin-dependent diabetes mellitus: The San Luis Valley diabetes study. Am J Epidemiol 134: 590–603PubMedGoogle Scholar
  49. 49.
    Marshall JA, Hoag S, Shetterly S, Hamman RF (1994) Dietary fat predicts conversion from impaired glucose tolerance to NIDDM. Diabetes Care 17: 50–56PubMedCrossRefGoogle Scholar
  50. 50.
    Feskens EJM, Kromhout D (1990) Habitual dietary intake and glucose tolerance in euglycemic men: the Zutphen study. Int J Epidemiol 19: 953–959PubMedCrossRefGoogle Scholar
  51. 51.
    Feskens EJM, Bowles C, Kromhout D (1991) Inverse association between fish intake and risk of glucose intolerance in normoglycemic elderly men and women. Diabetes Care 14: 935–941PubMedCrossRefGoogle Scholar
  52. 52.
    Vessby B, Aro A, Skarfors E, Berglund L, Salminen I, Lithell H (1994) The risk to develop NIDDM is related to the fatty acid composition of the serum cholesterol esters. Diabetes 43: 1353–1357PubMedCrossRefGoogle Scholar
  53. 53.
    Colditz GA, Manson JE, Stampfer MJ, Rosner B, Willett WC, Speizer FE (1992) Diet and risk of clinical diabetes in women. Am J Clin Nutr 55: 1018–1023PubMedGoogle Scholar
  54. 54.
    Campbell LV, Marmot PE, Dyer JA, Borkman M, Storlien LH (1994) The high-monounsaturated fat diet as a practical alternative for NIDDM. Diabetes Care 17: 177–182PubMedCrossRefGoogle Scholar
  55. 55.
    Garg A, Bantle JP, Henry RR et al. (1994) Effects of varying carbohydrate content of diet in patients with non-insulin-dependent diabetes mellitus. JAMA 142: 1–8Google Scholar
  56. 56.
    Feskens EJM, Loeber JG, Kromhout D (1994) Diet and physical activity as determinants of hyperinsulinemia: The Zutphen elderly study. Am J Epidemiol 140: 350–360PubMedGoogle Scholar
  57. 57.
    Schoeller DA, Ravussin E, Schutz Y, Acheson KJ, Baertschi P, Jéquier E (1986) Energy expenditure by doubly labeled water: validation in humans and proposed calculation. Am J Physiol 250:R823–R830PubMedGoogle Scholar
  58. 58.
    Schoeller DA, van Santen E (1982) Measurement of energy expenditure in humans by doubly labeled water method. J Appl Physiol 53: 955–959PubMedGoogle Scholar
  59. 59.
    Livingstone MBE, Prentice AM, Coward WA et al. (1990) Simultaneous measurement of free-living energy expenditure by the doubly labeled water method and heart-rate monitoring. Am J Clin Nutr 52: 59–65PubMedGoogle Scholar
  60. 60.
    Lightman SW, Pisarska K, Berman ER et al. (1992) Discrepancy between self-reported and actual caloric intake and exercise in obese subjects. N Engl J Med 327: 1893–1898CrossRefGoogle Scholar
  61. 61.
    Borkman M, Storlien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell LV (1993) The relationship between insulin sensitivity and the fatty acid composition of phospholipids of skeletal muscle. N Engl J Med 328: 238–244PubMedCrossRefGoogle Scholar
  62. 62.
    Pan DA, Lillioja S, Milner MR et al. (1995) Skeletal muscle membrane lipid composition is related to adiposity and insulin action. J Clin Invest 96: 2802–2808PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Storlien LH, Pan DA, Kriketos AD et al. (1995) Skeletal muscle membrane lipids and insulin resistance. Lipids (in press)Google Scholar
  64. 64.
    Raheja BS, Sadikot SM, Phatak RB, Rao MB (1993) Significance of the n-6/n-3 ratio for insulin action in diabetes. In: Klimes I, Howard BV, Storlien LH, Sebokova E (eds) Dietary lipids and insulin action, vol 683. Annals NY Acad Sci, New York New York, pp 258–271Google Scholar
  65. 65.
    Vessby B, Tengblad S, Lithell H (1994) Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia 37: 1044–1050PubMedCrossRefGoogle Scholar
  66. 66.
    Prochazka M, Lillioja S, Tait JF et al. (1993) Linkage of chromosomal markers on 4q with a putative gene determining maximal insulin action in Pima Indians. Diabetes 42: 514–519PubMedCrossRefGoogle Scholar
  67. 67.
    Simopoulos AP (1994) Is insulin resistance influenced by dietary linoleic acid and trans fatty acids? Free Radical Biol Med 17: 367–372CrossRefGoogle Scholar
  68. 68.
    Beyers EC, Emken EA (1991) Metabolites of cis, trans and trans, cis isomers of linoleic acid in mice and incorporation into tissue lipids. Biochim Biophys Acta 1082: 275–284PubMedCrossRefGoogle Scholar
  69. 69.
    Storlien LH, Pan DA, Milner M, Lillioja S (1993) Skeletal muscle membrane lipid composition is related to adiposity in man. Obesity Res 1[Suppl 2]:77SGoogle Scholar
  70. 70.
    Grunfeld C, Baird K, Kahn CR (1981) Maintenance of 3T3-L1 cells in culture media containing saturated fatty acids decreases insulin binding and insulin action. Biochem Biophys Res Commun 103: 219–226CrossRefPubMedGoogle Scholar
  71. 71.
    Yorek M, Leeney E, Dunlap J, Ginsberg B (1989) Effect of fatty acid composition on insulin and IGF-1 binding in retinoblastoma cells. Inv Ophth Vis Sci 30: 2087–2092Google Scholar
  72. 72.
    Maron DJ, Fair JM, Haskell WL (1991) Saturated fat intake and insulin resistance in men with coronary artery disease. The Stanford Risk Intervention Project Investigators and Staff. Circulation 84: 2020–2027PubMedCrossRefGoogle Scholar
  73. 73.
    Dyerberg J, Ban HO (1979) Haemostatic function and platelet polyunsaturated fatty acids in Eskimos. Lancet II:433–435CrossRefGoogle Scholar
  74. 74.
    Adler AI, Boyko EJ, Schraer CD, Murphy NJ (1994) Lower prevalence of impaired glucose tolerance and diabetes associated with daily seal oil or salmon consumption among Alaska natives. Diabetes Care 17: 1498–1501PubMedCrossRefGoogle Scholar
  75. 75.
    Coon PJ, Rogus EM, Drinkwater D, Muller DC, Goldberg AP (1992) Role of body fat distribution in the decline in insulin sensitivity and glucose tolerance with age. J Clin Endocrinol Metab 75: 1125–1132PubMedGoogle Scholar
  76. 76.
    Kohrt WM, Kirwan JP, Staten MA, Bourey RE, King DS, Holloszy JO (1993) Insulin resistance in aging is related to abdominal obesity. Diabetes 42: 273–281PubMedCrossRefGoogle Scholar
  77. 77.
    Flatt JP (1978) The biochemistry of energy expenditure. In: Bray GA (eds) Obesity research II. Newman, London, pp 211–288Google Scholar
  78. 78.
    Surina DM, Langhans W, Pauli R, Wenk C (1993) Meal composition affects postprandial fatty acid oxidation. Am J Physiol 264:R1065–R1070PubMedGoogle Scholar
  79. 79.
    Schutz Y, Flatt JP, Jequier E (1989) Failure of dietary fat intake to promote fat oxidation: a factor favoring the development of obesity. Am J Clin Nutr 50: 307–314PubMedGoogle Scholar
  80. 80.
    Astrup A, Buemann B, Christensen NJ, Toubro S (1994) Failure to increase lipid oxidation in response to increasing dietary fat content in formely obese women. Am J Physiol 266:E592–E599PubMedGoogle Scholar
  81. 81.
    Leyton J, Drury PJ, Crawford MA (1987) Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br J Nutr 57: 383–393PubMedCrossRefGoogle Scholar
  82. 82.
    Pan DA, Storlien LH (1993) Dietary lipid profile is a determinant of tissue phospholipid fatty acid composition and rate of weight gain in rats. J Nutr 123: 512–519PubMedGoogle Scholar
  83. 83.
    Pan DA, Storlien LH (1993) Effect of dietary lipid profile on the metabolism of Ω-3 fatty acids: implications for obesity prevention. In: Drevon CA, Baksaas I, Krokan HE (eds) Omega-3 fatty acids: metabolism and biological effects. BirkhÄuser, Basel, pp 97–106Google Scholar
  84. 84.
    Shimomura Y, Tamura T, Suzuki M (1990) Less body fat accumulation in rats fed a safflower oil diet than in rats fed a beef tallow diet. J Nutr 120: 1291–1296PubMedGoogle Scholar
  85. 85.
    Hainault I, Carlotti M, Hajduch E, Guichard C, Lavau M (1993) Fish oil in high lard diet prevents obesity, hyperlipemia and adipocyte insulin resistance in rats. In: Klimes I, Howard BV, Storlien LH, Sebokova E (eds) Dietary lipids and insulin action. vol 683. Annals NY Acad Sci, New York, pp 99–101Google Scholar
  86. 86.
    Pan DA, Hulbert AJ, Storlien LH (1994) Dietary fats, membrane phospholipids and obesity. J Nutr 124: 1555–1566PubMedGoogle Scholar
  87. 87.
    Leibel RL, Hirsch J, Appel BE, Checani GC (1992) Energy intake required to maintain body weight is not affected by wide variation in diet composition. Am J Clin Nutr 55: 350–355PubMedGoogle Scholar
  88. 88.
    Hill JO, Peters JC, Reed GW, Schlundt DG, Sharp T, Greene HL (1991) Nutrient balance in humans: effects of diet composition. Am J Clin Nutr 54: 10–17PubMedGoogle Scholar
  89. 89.
    Prewitt TE, Schmeisser D, Bowen PE et al. (1991) Changes in body weight, body composition, and energy intake in women fed high- and low-fat diets. Am J Clin Nutr 54: 304–310PubMedGoogle Scholar
  90. 90.
    Dreon DM, Frey-Hewitt B, Ellsworth N, Williams PT, Terry RB, Wood PD (1988) Dietary fat∶carbohydrate ratio and obesity in middle-aged men. Am J Clin Nutr 47: 995–1000PubMedGoogle Scholar
  91. 91.
    Miller WC, Lindeman AK, Wallace J, Niederpruem M (1990) Diet composition, energy intake, and exercise in relation to body fat in men and women. Am J Clin Nutr 52: 426–430PubMedGoogle Scholar
  92. 92.
    Romieu I, Willett WC, Stampfer MJ et al. (1988) Energy intake and other determinants of relative weight. Am J Clin Nutr 47: 406–412PubMedGoogle Scholar
  93. 93.
    Tucker LA, Kano MJ (1992) Dietary fat and body fat: a multivariate study of 205 females. Am J Clin Nutr 56: 616–622PubMedGoogle Scholar
  94. 94.
    Kant AK, Graubard BI, Schatzkin A, Ballard-Barbash R (1995) Proportion of energy intake from fat and subsequent weight change in the NHANES I Epidemiologic Follow-up Study. Am J Clin Nutr 61: 11–17PubMedGoogle Scholar
  95. 95.
    Després JP (1994) Dyslipidaemia and obesity. Baillieres Clin Endocrinol Metab 8: 629–660PubMedCrossRefGoogle Scholar
  96. 96.
    Paolisso G, D'Amore A, Guigliano D, Ceriello A, Varricchio M, D'Onofrio F (1993) Pharmacologic doses of vitamin E improve insulin action in healthy subjects and non-insulin-dependent diabetic patients. Am J Clin Nutr 57: 650–656PubMedGoogle Scholar
  97. 97.
    Paolisso G, D'Amore A, Balbi V et al. (1994) Plasma vitamin C affects glucose homeostasis in healthy subjects and in non-insulin-dependent diabetics. Am J Physiol 266:E261–E268PubMedGoogle Scholar
  98. 98.
    Pan DA, Milner MR, Lillioja S, Storlien LH (1995) Muscle lipid composition is related to body fatness and insulin action in humans. Int J Obesity 19: 213 (Abstract)Google Scholar
  99. 99.
    Felley CP, Felley EM, van Melle GD, Frascarolo P, Jéquier E, Felber J (1989) Impairment of glucose disposal by infusion of triglycerides in humans: role of glycemia. Am J Physiol 256:E747-E752PubMedGoogle Scholar
  100. 100.
    Standl E, Lotz N, Dexel T, Janka H, Kolb HJ (1980) Muscle triglycerides in diabetic subjects. Diabetologia 18: 463–469PubMedGoogle Scholar
  101. 101.
    Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL (1991) Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 87: 2246–2252PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Levin BE (1992) Intracarotid glucose induced norepinephrine response and the development of diet induced obesity. Int J Obes 16: 451–457Google Scholar
  103. 103.
    Pascoe W, Smythe G, Storlien L (1991) Enhanced responses to stress induced by fat-feeding in rats: relationship between hypothalamic noradrenaline and blood glucose. Brain Res 550: 192–196PubMedCrossRefGoogle Scholar
  104. 104.
    Green SM, Burley VJ, Blundell JE (1994) Effect of fat- and sucrose-containing foods on the size of eating episodes and energy intake in lean males: potential for causing overconsumption. Eur J Clin Nutr 48: 547–555PubMedGoogle Scholar
  105. 105.
    Blundell JE, Burley VJ, Cotton JR, Lawton CL (1993) Dietary fat and the control of energy intake: evaluating the effects of fat on meal size and postmeal satiety. Am J Clin Nutr 57[Suppl]:777S–778SGoogle Scholar
  106. 106.
    Feskens EJM, StengÄrd J, Virtanen SM et al. (1995) Dietary factors determining diabetes and impaired glucose tolerance. Diabetes Care 18: 1104–1112PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • L. H. Storlien
    • 1
  • L. A. Baur
    • 2
  • A. D. Kriketos
    • 2
  • D. A. Pan
    • 1
    • 2
  • G. J. Cooney
    • 2
  • A. B. Jenkins
    • 1
  • G. D. Calvert
    • 3
  • L. V. Campbell
    • 4
  1. 1.Department of Biomedical ScienceUniversity of WollongongWollongongAustralia
  2. 2.Department of EndocrinologyRoyal Prince Alfred HospitalSydneyAustralia
  3. 3.Medical Research UnitIllawarra Regional Hospital and University of WollongongAustralia
  4. 4.Diabetes CenterSt. Vincent's HospitalAustralia

Personalised recommendations