Advertisement

Current Genetics

, Volume 10, Issue 11, pp 857–869 | Cite as

The watermelon mitochondrial URF-1 gene: evidence for a complex structure

  • David B. Stern
  • Anne G. Bang
  • William F. Thompson
Original Articles

Summary

We have cloned and sequenced a fragment of watermelon mitochondrial DNA (mtDNA) which contains a gene homologous to mitochondrial URF-1 (Unidentified Reading Frame-1) of vertebrates, Drosophila yakuba and Aspergillus nidulans. URF-1 is thought to encode a component of the respiratory chain NADH dehydrogenase. Two coding regions in the watermelon gene are separated by approximately 1,450 by of untranslatable DNA. These two exons encode the central portions of URF-1, and are highly conserved. We postulate that three additional exons, selected by their map location and amino acid homology to other URF-1 sequences, encode the remainder of the polypeptide. This is the first description of a plant mitochondrial gene with multiple introns.

Key words

Intron Mitochondrial DNA Mitochondrial gene Unidentified reading frame 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Peron IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Nature (London) 290:457–465Google Scholar
  2. Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) J Mol Biol 156:683–717Google Scholar
  3. Bendich AJ (1985) Plant mitochondrial DNA: unusual variation on a common theme. In: Hohn B, Dennis ES (eds) Plant gene research, vol 2. Springer, Wien, pp 111–138Google Scholar
  4. Berk AJ, Sharp PA (1977) Cell 12:721–732Google Scholar
  5. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Cell 26:167–180Google Scholar
  6. Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523Google Scholar
  7. Bonen L, Boer PH, Gray MW (1984) EMBO J 3:2531–2536Google Scholar
  8. Braun CJ, Levings CS III (1985) Plant Physiol 79:571–577Google Scholar
  9. Brown TA, Davies RW, Ray JA, Waring RB, Scazzocchio C (1983) EMBO J 2:427–435Google Scholar
  10. Chomyn A, Mariottini P, Cleeter MWJ, Ragan CI, Matsuno-Yagi A, Hatefi Y, Doolittle RF, Attardi G (1985) Nature (London) 314:592–597Google Scholar
  11. Clary DO, Wahleithner JA, Wolstenholme DR (1984) Nucleic Acids Res 12:3747–3762Google Scholar
  12. Dagert M, Ehrlich SD (1979) Gene 6:23–28Google Scholar
  13. Davies RW, Waring RB, Ray JA, Brown TA, Scazzocchio C (1982) Nature (London) 300:719–724Google Scholar
  14. Dawson AJ, Jones VP, Leaver CJ (1984) EMBO J 3:2107–2113Google Scholar
  15. Dewey RE, Schuster AM, Levings CS III, Timothy DH (1985a) Proc Natl Acad Sci USA 82:1015–1019Google Scholar
  16. Dewey RE, Levings CS III, Timothy DH (1985b) Plant Physiol 79:914–919Google Scholar
  17. Delaney AD (1982) Nucleic Acids Res 10:61–67Google Scholar
  18. Dynan WS, Tjian R (1985) Cell 316:714–778Google Scholar
  19. Edwards JC, Levens D, Rabinowitz M (1982) Cell 31:337–346Google Scholar
  20. Emerson BM, Lewis CD, Felsenfeld G (1985) Cell 41:21–30Google Scholar
  21. Fox TD, Leaver CJ (1981) Cell 26:315–323Google Scholar
  22. Gottschalk M, Brennicke A (1985) Curr Genet 9:165–168Google Scholar
  23. Gray MW, Spencer DF (1983) FEBS Lett 161:323–327Google Scholar
  24. Hatefi Y, Haavik AG, Griffiths DE (1962) J Biol Chem 237: 1676–1680Google Scholar
  25. Hensgens LAM, Brakenhoff J, De Vries BF, Sloof P, Tromp MC, Van Boom JH, Benne R (1984) Nucleic Acids Res 12:7327–7344Google Scholar
  26. Hiesel R, Brennicke A (1983) EMBO J 2:2173–2178Google Scholar
  27. Hixson JE, Clayton DA (1985) Proc Natl Acad Sci USA 82: 2660–2664Google Scholar
  28. Hu N, Messing J (1982) Gene 17:271–277Google Scholar
  29. Isaac PG, Jones VP, Leaver CJ (1985) EMBO J 4: 1617–1623Google Scholar
  30. Kao T, Moon E, Wu R (1984) Nucleic Acids Res 12:7305–7315Google Scholar
  31. Kolodner R, Tewari KK (1972) Proc Natl Acad Sci USA 69: 1830–1834Google Scholar
  32. Kyte J, Doolittle RF (1982) J Mol Biol 157:105–132Google Scholar
  33. Leaver CJ, Gray MW (1982) Annu Rev Plant Physiol 33:373–402Google Scholar
  34. Maniatis T, Fritsch EF, Sambrook J (1982). In: Molecular cloning — A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, Ny, pp 164–165; 207–209Google Scholar
  35. Michel F, Dujon M (1983) EMBO J 2:33–38Google Scholar
  36. Moon E, Kao T, Wu R (1985) Nucleic Acids Res 13:3195–3212Google Scholar
  37. Pabo CO, Sauer RT (1984) Annu Rev Biochem 53:293–321Google Scholar
  38. Pelham HRB (1982) Cell 30:517–528Google Scholar
  39. Pratje E, Schnierer S, Dujon B (1984) Curr Genet 9:75–82Google Scholar
  40. Quetier F, Lejeune B, Delorme S, Falconet D (1985) Molecular organization and expression of the mitochondrial genome of higher plants. In: Douce R, Day DA (eds) Springer, Berlin Heidelberg New York Tokyo, pp 25–36Google Scholar
  41. Rigby PWJ, Dreckmann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251Google Scholar
  42. Roe BA, Ma D-P, Wilson RK, Wong JF-H (1985) J Biol Chem 260:9759–9774Google Scholar
  43. Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  44. Schuster W, Brennicke A (1985) Curr Genet 9:157–163Google Scholar
  45. Smith GE, Summers MD (1980) Anal Biochem 109:123–129Google Scholar
  46. Stern DB, Newton KJ (1985) Curr Genet 9:395–405Google Scholar
  47. Stern DB, Newton KJ (1986) Methods Enzymol 118:488–496Google Scholar
  48. Stern DB, Palmer JD (1984) Nucleic Acids Res 12:6141–6157Google Scholar
  49. Vieira J, Messing J (1982) Gene 19:259–268Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • David B. Stern
    • 1
  • Anne G. Bang
    • 1
  • William F. Thompson
    • 1
  1. 1.Department of Plant BiologyCarnegie Institution of WashingtonStanfordUSA

Personalised recommendations