Summary
An EcoR1 shotgun of Yarrowia lipolytica DNA was inserted into the plasmid YIp333 which carries the LYS2 gene of S. cerevisiae. The resulting plasmid pool was transformed in both S. cerevisiae and Y. lipolytica. Whereas numerous replicating plasmids could be isolated from the S. cerevisiae Lys+ transformants, all transformants of Y. lipolytica so far analyzed were found to result from integrative transformation. This occurred at a frequency of 1 to 10 transformants per μg of input DNA. Co-transformation occurred at high frequency and resulted in tandem integration of 2 to 10 copies of the incoming DNA. Structural and segregational stability of the transforming DNA were both high.
Key words
Yarrowia lipolytica Heterologous gene expression Integrative transformation Homologous recombinationPreview
Unable to display preview. Download preview PDF.
References
- Bassel JB, Mortimer RK (1982) Curr Genet 5:77–88Google Scholar
- Beach D, Nurse P (1981) Nature (London) 290:140–142Google Scholar
- Beckerich JM, Colonna Ceccaldi B, Lambert M, Heslot H (1984) Curr Genet 8:531–536Google Scholar
- Beggs JD (1978) Nature (London) 275:104–109Google Scholar
- Das S, Hollenberg CP (1982) Curr Genet 6:123–126Google Scholar
- Davidow LS, Apostolakos, D, O'Donnell MM, Proctor AR, Ogrydziak DM, Wing RA, Stasko I, DeZeeuw JR (1985) Curr Genet 10:39–48Google Scholar
- Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 116–217Google Scholar
- Eibel H, Philippsen P (1983) Mol Gen Genet 191:66–73Google Scholar
- Gaillardin CM, Charoy V, Heslot H (1973) Arch Microbiol 92:69–83Google Scholar
- Gaillardin CM, Poirier L, Ribet AM, Heslot H (1979) Biochimie 61:473–482Google Scholar
- Heslot H, Gaillardin CM, Beckerich JM, Fournier P (1979) Control of lysine metabolism in the petroleum yeast Saccharomycopsis lipolytica. In: Sebek OK, Laskin A (eds) Genetics of industrial microorganisms. American Society for Microbiology, Washington, DC, pp 54–60Google Scholar
- Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168Google Scholar
- Jimenez A, Davies J (1980) Nature (London) 287:869–871Google Scholar
- Losson R, Lacroute F (1983) Cell 32:371–377Google Scholar
- de Louvencourt L, Fukuhara H, Heslot H, Wesolowski M (1983) J Bacteriol 154:737–742Google Scholar
- Murray K, Szostak JW (1983) Cell 34:961–970Google Scholar
- Ogrydziak DM, Sharf SS (1982) J Gen Microbiol 128:1225–1234Google Scholar
- Ogrydziak DM, Bassel J, Mortimer RK (1982) Mol Gen Genet 188:179–183Google Scholar
- Sakaguchi J, Yamamoto M (1982) Proc Natl Acad Sci USA 79:7819–7823Google Scholar
- Sherman F, Fink GR, Hicks JB (1979) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 90–92Google Scholar
- Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039Google Scholar
- Wickerham LJ, Kurtzman CP, Herman AL (1969) Sexuality in Candida lipolytica. In: Ahearn G (ed) Recent trends in yeast research, vol 1. Spectrum, Georgia State University, Atlanta, pp 81–92Google Scholar
- Zamir A, Maina CV, Fink GR, Szalay AA (1981) Proc Natl Acad Sci USA 78:3496–3500Google Scholar
- Zukowski MM, Gaffner DF, Speck D, Kauffmann M, Findeli A, Wisecup A, Lecoq JP (1983) Proc Natl Acad Sci USA 80:1101–1105Google Scholar
Copyright information
© Springer-Verlag 1985