Current Genetics

, Volume 10, Issue 1, pp 49–58 | Cite as

Integrative transformation of the yeast Yarrowia lipolytica

  • C. Gaillardin
  • A. M. Ribet
  • H. Heslot


An EcoR1 shotgun of Yarrowia lipolytica DNA was inserted into the plasmid YIp333 which carries the LYS2 gene of S. cerevisiae. The resulting plasmid pool was transformed in both S. cerevisiae and Y. lipolytica. Whereas numerous replicating plasmids could be isolated from the S. cerevisiae Lys+ transformants, all transformants of Y. lipolytica so far analyzed were found to result from integrative transformation. This occurred at a frequency of 1 to 10 transformants per μg of input DNA. Co-transformation occurred at high frequency and resulted in tandem integration of 2 to 10 copies of the incoming DNA. Structural and segregational stability of the transforming DNA were both high.

Key words

Yarrowia lipolytica Heterologous gene expression Integrative transformation Homologous recombination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bassel JB, Mortimer RK (1982) Curr Genet 5:77–88Google Scholar
  2. Beach D, Nurse P (1981) Nature (London) 290:140–142Google Scholar
  3. Beckerich JM, Colonna Ceccaldi B, Lambert M, Heslot H (1984) Curr Genet 8:531–536Google Scholar
  4. Beggs JD (1978) Nature (London) 275:104–109Google Scholar
  5. Das S, Hollenberg CP (1982) Curr Genet 6:123–126Google Scholar
  6. Davidow LS, Apostolakos, D, O'Donnell MM, Proctor AR, Ogrydziak DM, Wing RA, Stasko I, DeZeeuw JR (1985) Curr Genet 10:39–48Google Scholar
  7. Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 116–217Google Scholar
  8. Eibel H, Philippsen P (1983) Mol Gen Genet 191:66–73Google Scholar
  9. Gaillardin CM, Charoy V, Heslot H (1973) Arch Microbiol 92:69–83Google Scholar
  10. Gaillardin CM, Poirier L, Ribet AM, Heslot H (1979) Biochimie 61:473–482Google Scholar
  11. Heslot H, Gaillardin CM, Beckerich JM, Fournier P (1979) Control of lysine metabolism in the petroleum yeast Saccharomycopsis lipolytica. In: Sebek OK, Laskin A (eds) Genetics of industrial microorganisms. American Society for Microbiology, Washington, DC, pp 54–60Google Scholar
  12. Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168Google Scholar
  13. Jimenez A, Davies J (1980) Nature (London) 287:869–871Google Scholar
  14. Losson R, Lacroute F (1983) Cell 32:371–377Google Scholar
  15. de Louvencourt L, Fukuhara H, Heslot H, Wesolowski M (1983) J Bacteriol 154:737–742Google Scholar
  16. Murray K, Szostak JW (1983) Cell 34:961–970Google Scholar
  17. Ogrydziak DM, Sharf SS (1982) J Gen Microbiol 128:1225–1234Google Scholar
  18. Ogrydziak DM, Bassel J, Mortimer RK (1982) Mol Gen Genet 188:179–183Google Scholar
  19. Sakaguchi J, Yamamoto M (1982) Proc Natl Acad Sci USA 79:7819–7823Google Scholar
  20. Sherman F, Fink GR, Hicks JB (1979) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 90–92Google Scholar
  21. Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039Google Scholar
  22. Wickerham LJ, Kurtzman CP, Herman AL (1969) Sexuality in Candida lipolytica. In: Ahearn G (ed) Recent trends in yeast research, vol 1. Spectrum, Georgia State University, Atlanta, pp 81–92Google Scholar
  23. Zamir A, Maina CV, Fink GR, Szalay AA (1981) Proc Natl Acad Sci USA 78:3496–3500Google Scholar
  24. Zukowski MM, Gaffner DF, Speck D, Kauffmann M, Findeli A, Wisecup A, Lecoq JP (1983) Proc Natl Acad Sci USA 80:1101–1105Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • C. Gaillardin
    • 1
  • A. M. Ribet
    • 1
  • H. Heslot
    • 1
  1. 1.Laboratoire de GénétiqueInstitut National Agronomique Paris-GrignonParis Cedex 05France

Personalised recommendations