Advertisement

Current Genetics

, Volume 10, Issue 1, pp 39–48 | Cite as

Integrative transformation of the yeast Yarrowia lipolytica

  • Lance S. Davidow
  • Diane Apostolakos
  • Michele M. O'Donnell
  • Alan R. Proctor
  • David M. Ogrydziak
  • Rod A. Wing
  • Irene Stasko
  • John R. DeZeeuw
Article

Summary

We have derived a DNA-mediated transformation system for the yeast Yarrowia lipolytica based on the lithium acetate method Ito et al. (1983) developed for Saccharomyces cerevisiae. The first plasmid used, pLD25, contains the Y. lipolytica LEU2 gene (coding for the enzyme beta-isopropylmalate dehydrogenase, EC 1.1.1.85) on a 6.6 kb piece of DNA inserted into pBR322. The recipient strain ATCC 20688 contains the rarely reverting mutation leu2-35. The Y. lipolytica LEU2 gene complements leuB mutants in Escherichia coli and leu2 mutants in S. cerevisiae and it also hybridizes weakly to the S. cerevisiae LEU2 gene. Y. lipolytica transformation frequencies of up to 104 Leu+ cells per microgram of DNA, per 108 viable cells have been obtained from plasmds linearized with restriction enzymes. The more than 100-fold increase in transformation frequency obtained by using linearized DNA instead of intact plasmid resembles the situation seen in S. cerevisiae for site-directed integrative transformation (Orr-Weaver et al. 1981). The transformants were stable when grown in non-selective medium. We found that pLD25 integrated at the leu2 region when either linear or intact plasmid was used to transform Y. lipolytica.

Key words

Yarrowia lipolytica Integrative transformation LEU2 Genetic recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreadis A, Hsu Y-P, Kohlaw GB, Schimmel P (1982) Cell 31:319–325Google Scholar
  2. Andreadis A, Hsu Y-P, Hermodson M, Kohlaw G, Schimmel P (1984) J Biol Chem 259:8059–8062Google Scholar
  3. Bassel JB, Mortimer RK (1982) Curr Genet 5:77–88Google Scholar
  4. Beach D, Nurse P (1981) Nature (London) 290:140–142Google Scholar
  5. Beggs JD (1978) Nature (London) 275:104–108Google Scholar
  6. Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW (1979) Gene 8:17–24Google Scholar
  7. Brake AJ, Merryweather JP, Coit DG, Heberlein UA, Masiarz FR, Mullenbach GT, Urdea MS, Balenzuela P, Barr PJ (1984) Proc Natl Acad Sci USA 81:4642–4646Google Scholar
  8. Casadaban MJ, Cohen SN (1980) J Mol Biol 138:179–207Google Scholar
  9. Clark AJ, Maas WK, Low B (1969) Mol Gen Genet 105:1–15Google Scholar
  10. Dagert M, Ehrlich SD (1979) Gene 6:23–28Google Scholar
  11. Das S, Hollenberg CP (1982) Curr Genet 6:123–128Google Scholar
  12. Das S, Kellermann E, Hollenberg CP (1984) J Bacteriol 158:1165–1167Google Scholar
  13. DeZeeuw JR, Stasko I (1983) USA Patent 4407953Google Scholar
  14. DeZeeuw JR, Tynan EJ (1973a) USA Patent 3736229Google Scholar
  15. DeZeeuw JR, Tynan EJ (1973b) USA Patent 3756917Google Scholar
  16. Heslot H, Gaillardin CM, Beckerich JM, Fournier P (1979) Control of lysine metabolism in the petroleum yeast Saccharomycopsis lipolytica. In: Sebek OK, Laskin AL (eds) Genetics of industrial microorganisms. American Society for Microbiology, Washington, DC, pp 54–60Google Scholar
  17. Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933Google Scholar
  18. Hitzeman RA, Leung DW, Perry LJ, Kohr WJ, Levine HL, Goeddel DV (1983) Science 219:620–625Google Scholar
  19. Holmes DS, Quigley M (1981) Anal Biochem 114:193–197Google Scholar
  20. Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168Google Scholar
  21. Low BK (1973) J Bacteriol 113:798–812Google Scholar
  22. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  23. Nasmyth K, Reed S (1980) Proc Natl Acad Sci USA 77:2119–2123Google Scholar
  24. Ogrydziak DM, Scharf SJ (1982) J Gen Microbiol 128:1225–1234Google Scholar
  25. Ogrydziak D, Bassel J, Contopoulou R, Mortimer R (1978) Mol Gen Genet 163:229–239Google Scholar
  26. Ogrydziak DM, Bassel J, Mortimer R (1982) Mol Gen Genet 188:179–183Google Scholar
  27. Orr-Weaver TL, Szostak JW, Rothstein RI (1981) Proc Natl Acad Sci USA 78:6354–6358Google Scholar
  28. Orr-Weaver TL, Szostak JW, Rothstein RJ (1983) Methods Enzymol 101:228–245Google Scholar
  29. Petes TD (1980) Cell 19:765–774Google Scholar
  30. Ratzkin B, Carbon J (1977) Proc Natl Acad Sci USA 74:487–491Google Scholar
  31. Rothstein RJ (1983) Methods Enzymol 101:202–211Google Scholar
  32. Seed B, Parker RC, Davidson N (1982) Gene 19:201–209Google Scholar
  33. Shah DN, Purohit AP, Sriprakash RS (1982) Enzyme Microbiol Technol 4:116–117Google Scholar
  34. Sherman F, Fink GR, Hicks JB (1981) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  35. Southern EM (1975) J Mol Biol 98:503–517Google Scholar
  36. Struhl K, Stinchchomb DT, Sherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039Google Scholar
  37. Stüber D, Bujard H (1981) Proc Natl Acad Sci USA 78:167–171Google Scholar
  38. Tobe S, Takami T, Ikeda S, Mitsugi K (1976) Agric Biol Chem 40:1087–1092Google Scholar
  39. Yang RC-A, Lis J, Wu R (1979) Methods Enzymol 68:176–182Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Lance S. Davidow
    • 1
  • Diane Apostolakos
    • 1
  • Michele M. O'Donnell
    • 1
  • Alan R. Proctor
    • 1
  • David M. Ogrydziak
    • 1
  • Rod A. Wing
    • 2
  • Irene Stasko
    • 1
  • John R. DeZeeuw
    • 1
  1. 1.Pfizer Central ResearchGrotonUSA
  2. 2.Institute of Marine ResourcesUniversity of CaliforniaDavisUSA

Personalised recommendations