, Volume 39, Issue 3, pp 281–288 | Cite as

Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs

  • J. Markussen
  • S. Havelund
  • P. Kurtzhals
  • A. S. Andersen
  • J. Halstrøm
  • E. Hasselager
  • U. D. Larsen
  • U. Ribel
  • L. Schäffer
  • K. Vad
  • I. Jonassen


We have synthesized insulins acylated by fatty acids in the ε-amino group of LysB29. Soluble preparations can be made in the usual concentration of 600 nmol/ml (100 IU/ml) at neutral pH. The time for 50% disappearance after subcutaneous injection of the corresponding TyrA14(125I)-labelled insulins in pigs correlated with the affinity for binding to albumin (r=0.97), suggesting that the mechanism of prolonged disappearance is binding to albumin in subcutis. Most protracted was LysB29-tetradecanoyl des-(B30) insulin. The time for 50% disappearance was 14.3±2.2 h, significantly longer than that of Neutral Protamine Hagedorn (NPH) insulin, 10.5±4.3 h (p<0.001), and with less inter-pig variation (p<0.001). Intravenous bolus injections of LysB29-tetradecanoyl des-(B30) human insulin showed a protracted blood glucose lowering effect compared to that of human insulin. The relative affinity of LysB29-tetradecanoyl des-(B30) insulin to the insulin receptor is 46%. In a 24-h glucose clamp study in pigs the total glucose consumptions for LysB29-tetradecanoyl des-(B30) insulin and NPH were not significantly different (p=0.88), whereas the times when 50% of the total glucose had been infused were significantly different, 7.9±1.0 h and 6.2±1.3 h, respectively (p<0.04). The glucose disposal curve caused by LysB29-tetradecanoyl des-(B30) insulin was more steady than that caused by NPH, without the pronounced peak at 3 h. Unlike the crystalline insulins, the soluble LysB29-tetradecanoyl des-(B30) insulin does not elicit invasion of macrophages at the site of injection. Thus, LysB29-tetradecanoyl des-(B30) insulin might be suitable for providing basal insulin in the treatment of diabetes mellitus.


Insulin analogues albumin binding prolonged action basal insulin fatty acids tetradecanoic acid myristic acid lysineB29 acylation receptor affinity 



Human insulin


human serum albumin


LysB29-tetradecanoyl des-(B30) human insulin


Neutral Protamine Hagedorn, a crystalline insulin-protamine preparation


time for 50% disappearance


soluble insulin receptor (extracellular parts)


Tris buffered saline pH 7.6










Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977–986Google Scholar
  2. 2.
    Krayenbühl C, Rosenberg T (1946) Crystalline protamine insulin. Rep Steno Mem Hosp Nord Insulinlab 1: 60–73Google Scholar
  3. 3.
    Hallas-MØller K (1956) The Lente insulins. Diabetes 5: 7–14Google Scholar
  4. 4.
    Frid A, östman J, Linde B (1990) Hypoglycemia risk during exercise after intramuscular injection of insulin in thigh in IDDM. Diabetes Care 13: 473–477Google Scholar
  5. 5.
    Thow JC, Johnson AB, Antsiferov M, Home PD (1989) Effect of raising injection-site skin temperature on Isophane (NPH) insulin crystal dissociation. Diabetes Care 12: 432–434Google Scholar
  6. 6.
    Markussen J, Hougaard P, Ribel U, SØrensen AR, SØrensen E (1987) Soluble, prolonged-acting insulin derivatives. I. Degree of protraction and crystallizability of insulins substituted in the termini of the B-chain. Protein Engineering 1: 205–213Google Scholar
  7. 7.
    Markussen J, Diers I, Engesgaard A et al. (1987) Soluble, prolonged-acting insulin derivatives. II. Degree of protraction and crystallizability of insulins substituted in positions A17, B8, B13, B27 and B30. Protein Engineering 1: 215–223Google Scholar
  8. 8.
    Markussen J, Diers I, Hougaard P et al. (1988) Soluble, prolonged-acting insulin derivatives. III. Degree of protraction, crystallizability and stability of insulins substituted in positions A21, B13, B23, B27 and B30. Protein Engineering 2: 157–166Google Scholar
  9. 9.
    JØrgensen S, Vaag A, LangkjÆr L, Hougaard P, Markussen J (1989) NovoSol Basal: pharmacokinetics of a novel soluble long acting insulin analogue. BMJ 299: 415–419Google Scholar
  10. 10.
    Holman RR, Steemson J (1989) OPID 174: a novel long-acting insulin preparation. Diabet Med 6[Suppl 1]1:A41 (Abstract)Google Scholar
  11. 11.
    Spector AA (1975) Fatty acid binding to plasma albumin. J Lipid Res 16: 165–179Google Scholar
  12. 12.
    Peters T (1985) Serum albumin. Adv Protein Chem 17: 161–245Google Scholar
  13. 13.
    Gliemann J, Gammeltoft S (1974) The biological activity and the binding affinity of modified insulins determined on isolated rat fat cells. Diabetologia 10: 105–113Google Scholar
  14. 14.
    Geiger R, Obermeier R, Teetz V et al. (1980) Biological activity of insulin analogues substituted at the amino group of B1-phenylalanine. In: Brandenburg D, Wollmer A (eds) Insulin: chemistry, structure and function of insulin and related hormones. Walter de Gruyter, Berlin New York, pp 409–415Google Scholar
  15. 15.
    Hashimoto M, Takada K, Kiso Y, Muranishi S (1989) Synthesis of palmitoyl derivatives of insulin and their biological activities. Pharm Res 6: 171–176Google Scholar
  16. 16.
    Brange J, Havelund S, Hommel E, SØrensen E, Kühl C (1986) Neutral insulin solutions physically stabilized by addition of Zn2+. Diabet Med 3: 532–536Google Scholar
  17. 17.
    Havelund S, HalstrØm JB, Jonassen I, Andersen AS, Markussen J (1995) Acylated insulin. Patent application PCT/DK94/00347. International publication number: WO 95/07931Google Scholar
  18. 18.
    Drejer K, Kruse V, Larsen UD, Hougaard P, BjØrn S, Gammeltoft S (1991) Receptor binding and tyrosine kinase activation by insulin analogues with extreme affinities studied in human hepatoma HepG2 cells. Diabetes 40: 1488–1495Google Scholar
  19. 19.
    Reed RG, Gates T, Peters T (1975) Albumin immobilized on agarose as a tool for measuring ligand binding by proteins or peptides. Anal Biochem 69: 361–371Google Scholar
  20. 20.
    Markussen J, HalstrØm JB, Wiberg FC, SchÄffer L (1991) Immobilized insulin for high capacity affinity chromatography of insulin receptors. J Biol Chem 266: 18814–18818Google Scholar
  21. 21.
    Kristensen C, Andersen AS, Hach M, Wiberg FC, SchÄffer L, Kjeldsen T (1995) A single-chain insulin-like growth factor I/insulin hybrid binds with high affinity to the insulin receptor. Biochem J 305: 981–986Google Scholar
  22. 22.
    Baadegaard N (1993) Measurements of drug absorption patterns. An Industrial Research Project EF 340, Ph. D. Thesis, the Technical University of Denmark, June 1993Google Scholar
  23. 23.
    Ribel U, JØrgensen K, Brange J, Henriksen U (1986) The pig as a model for subcutaneous absorption in man. In: Serrano-Rios M, Lefebvre PJ (eds) Diabetes 1985. Proceeding of the 12th Congress of the International Diabetes Federation, Madrid 1985. Excerpta Medica, Amsterdam, pp 891–896Google Scholar
  24. 24.
    Ribel U, Brange J, VØlund A, Heding LG (1984) Subcutaneous absorption of 65Zn- and 125I-labelled neutral insulin solutions. Diabetologia 27[Suppl 2]:325A (Abstract)Google Scholar
  25. 25.
    Ribel U, Hougaard P, Drejer K, SØrensen AR (1990) Equivalent in vivo biological activity of insulin analogues and human insulin despite different in vitro potencies. Diabetes 39: 1033–1039Google Scholar
  26. 26.
    He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358: 209–215Google Scholar
  27. 27.
    Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45: 153–203Google Scholar
  28. 28.
    Pullen RA, Lindsay DG, Wood SP et al. (1976) Receptor-binding region of insulin. Nature 259: 369–373Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. Markussen
    • 1
  • S. Havelund
    • 1
  • P. Kurtzhals
    • 1
  • A. S. Andersen
    • 1
  • J. Halstrøm
    • 1
  • E. Hasselager
    • 1
  • U. D. Larsen
    • 1
  • U. Ribel
    • 1
  • L. Schäffer
    • 1
  • K. Vad
    • 1
  • I. Jonassen
    • 1
  1. 1.Department of Insulin ResearchNovo Nordisk A/SBagsvaerdDenmark

Personalised recommendations