, Volume 22, Issue 5, pp 453–470 | Cite as

Polymorphism in mouse and human class I H-2 and HLA genes is not the result of random independent point mutations

  • Christian Jaulin
  • Arnaud Perrin
  • Jean-Pierre Abastado
  • Bruno Dumas
  • Joseph Papamatheakis
  • Philippe Kourilsky


Sufficient mouse H-2 and human HLA class I gene sequences have become available to make a statistical analysis of nucleotide variations within the multigene families possible. In the H-2 and HLA families, a group of four H-2K allelic sequences and three HLA-A sequences were compared with a group of four non-H-2 and three non-HLA-A sequences, respectively. Simple calculations show that nucleotide variations in each group do not occur in a random independent fashion. It is therefore possible that a number of mutations are “concerted” between the subgroups. Interestingly, these concerted mutations are clustered and distributed almost exclusively in the 5′ end of H-2 and HLA genes, which is very rich in GC nucleotides, and where the dinucleotide CpG is particularly frequent. The general concept of unequal repair is proposed as the basis of a model which is supported by these observations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abastado, J. P.: Les antigenes de transplantation murins : Isolement et caractérisation de clones d'ADNc. Doctoral thesis, Paris VI University, 1982Google Scholar
  2. Arnold, B., Burgert, H. G., Archibald, A. L., and Kvist, S.: Complete nucleotide sequence of the murine H-2Kk gene. Comparison of three H-2K locus alleles. Nucleic Acids Res. 12: 9473–9487, 1984Google Scholar
  3. Baltimore, D.: Gene conversion: Some implications for immunoglobulin genes. Cell 24: 592–594,1981Google Scholar
  4. Baralle, F. E., Swoulders, C. C., and Proudfoot, N. J.: The primary structure of the human ɛ-globin gene. Cell 21: 621–626, 1980Google Scholar
  5. Barker, D., Schafer, M., and White, R.: Restriction sites containing CpG show a higher frequency of polymorphism in human DNA. Cell 36: 131–138, 1984Google Scholar
  6. Benoist, C. O., Mathis, D. J., Kanter, M. R., Williams II, V. E., and McDevitt, H. O.: Regions of allelic hypervariability in the murine Aα immune response gene. Cell 34: 169–177, 1983Google Scholar
  7. Brégégère, F.: A directional process of gene conversion is expected to yield dynamic polymorphism associated with stability of alternative alleles in class I histocompatibility antigens gene family. Biochimie 65: 229–237, 1983Google Scholar
  8. Coulondre, C., Miller, J. H., Farabaugh, P. J., and Gilbert, W.: Molecular basis of base substitution hotspots in Escherichia coli. Nature 274: 775–780, 1979Google Scholar
  9. Degos, L.: La répartition anthropologique des gènes HLA et la dynamique des populations. In J. Dausset and M. Pla (eds.): HLA Complexe majeur d'histocompatibilité de l'homme, pp. 101–119, Flammarion, Paris, 1985Google Scholar
  10. Denaro, M., Hämmerling, U., Rask, L., and Peterson, P. A.: The Eb gene may have acted as the donor gene in a gene conversion-like event generating the Abm12 mutant. EMBO J. 3: 2029–2032, 1984Google Scholar
  11. Dover, G.: Molecular drive: A cohesive mode of species evolution. Nature 299: 111–117, 1982Google Scholar
  12. Dumas, B.: Contribution à l'étude des gènes codant pour des antigènes d'histocompatibilité de classe I chez la souris. Doctoral thesis, Paris VII University, 1983Google Scholar
  13. Egel, R.: Intergenic conversion and reiterated genes. Nature 290: 191–192, 1981Google Scholar
  14. Evans, G. A., Margulies, D. H., Camerini-Otero, R. D., Ozato, K., and Seidman, J. G.: Structure and expression of a mouse major histocompatibility antigene gene, H-2Ld. Proc. Natl. Acad. Sci. U.S.A. 79: 1994–1998, 1982Google Scholar
  15. Figueroa, F., Golubić, M., Nizetić, D., and Klein, J.: Evolution of mouse major histocompatibility complex genes borne by t chromosomes. Proc. Natl. Acad. Sci. U.S.A. 82: 2819–2823, 1985Google Scholar
  16. Flaherty, L.: Tla-region antigens. In M. E. Dorf (ed.): The Role of the Major Histocompatibility Complex in Immunobiology, pp. 33–58, Garland Publishing Inc., New York, 1980Google Scholar
  17. Fogel, S., Mortimer, R., Lusnak, K., and Tavares, T.: Meiotic gene conversion: A signal of the basic recombination event in yeast. Cold Spring Harbor Symp. Quant. Biol. 53: 1325–1341, 1978Google Scholar
  18. Gachelin, G., Dumas, B., Abastado, J. P., Cami, B., Papamatheakis, P., and Kourilsky, P.: Mouse genes coding for the major class I transplantation antigens: A mosaic structure might be related to the antigenic polymorphism. Ann. Inst. Pasteur (Immunol.) 133 C: 3–20, 1982Google Scholar
  19. Gustafsson, K., Wiman, K., Emmoth, E., Larhammar, D., Böhme, J., Hylding-Nielsen, J. J., Ronne, H., Peterson, P. A., and Rask, L.: Mutations and selection in the generation of class I histocompatibility antigen polymorphism. EMBO J. 3: 1655–1661, 1984Google Scholar
  20. Hood, L., Campbell, J. H., and Elgin, S. C. R.: The organization, expression and evolution of antibody gene and other multigene families. Ann. Rev. Genet. 9: 305–353, 1975Google Scholar
  21. Jordan, B. R., Lemonnier, F. A., Le Bouteiller, P., Malissen, M., Mishal, Z., Sodoyer, R., Delovitch, T. D., Strachman, T., Damotte, M., N'Guyen, C., Layet, C., Dubreuil, J., Van Agthoven, A., Trucy, J., and Caillol, C.: Structure and expression of cloned HLA class I genes. In Y. Yamamura and T. Tada (eds.): Progress in Immunology V. Fifth International Congress of Immunology, pp. 187–201, Academic Press, London, 1983Google Scholar
  22. Kimball, E. S. and Coligan, J. E.: Structure of class I major histocompatibility antigens. Contemp. Top. Mol. Immunol. 9: 1–23, 1983Google Scholar
  23. Klein, J.: The major histocompatibility complex of the mouse. Science 203: 516–521, 1979Google Scholar
  24. Klein, J.: Gene conversion in MHC genes. Transplantation 38: 327–329, 1984Google Scholar
  25. Koller, B. M. and Orr, H. T.: Cloning and complete sequence of an HLA-A2 gene: Analysis of two HLA-A alleles at the nucleotide level. J. Immunol. 134: 2727–2733, 1985Google Scholar
  26. Kourilsky, P.: Genetic exchanges between partially homologous nucleotide sequences: Possible implications for multigene families. Biochimie 65: 85–93, 1983Google Scholar
  27. Kvist, S., Roberts, L., and Dobberstein, B.: Mouse histocompatibility genes: Structure and organization of a Kd gene. EMBO J. 2: 245–254,1983Google Scholar
  28. Lalanne, J. L., Delarbre, C., Brégégère, F., Abastado, J. P., Gachelin, G., and Kourilsky, P.: Comparison of nucleotide sequences of mRNAs belonging to the mouse H-2 multigene family. Nucleic Acids Res. 10: 1039–1049, 1982Google Scholar
  29. Malissen, M., Malissen, B., and Jordan, B. R.: Exon/intron organization and complete nucleotide sequence of an HLA gene. Proc. Natl. Acad. Sci. U.S.A. 79: 893–897, 1982Google Scholar
  30. McIntyre, K. R. and Seidman, J. G.: Nucleotide sequence of mutant I-Aβm12 gene is evidence for genetic exchange between mouse immune response genes. Nature 308: 551–554, 1984Google Scholar
  31. Mellor, A. L., Weiss, E. H., Rachmandran, K., and Flavell, R. A.: A potential donor gene for the bml gene conversion event in the C57BL mouse. Nature 306: 792–795, 1983Google Scholar
  32. Mellor, A. L., Weiss, E. H., Kress, M., Jay, G., and Flavell, R. A.: A non polymorphic class I gene in the murine major histocompatibility complex. Cell 36: 139–144, 1984Google Scholar
  33. Moore, K. W., Sher, B. T., Sur, Y. K., Eakle, K. A., and Hood, L.: DNA sequence of a gene encoding a BALB/c mouse Ld transplantation antigen. Science 215: 679–682, 1982Google Scholar
  34. Morita, T., Delarbre, C., Kress, M., Kourilsky, P., and Gachelin, G.: An H-2K gene of the t w32 mutant at the T/t complex is a close parent of an H-2K q gene. Immunogenetics 21: 367–383, 1985Google Scholar
  35. Nairn, R., Yamaga, K., and Nathenson, S. G.: Biochemistry of the gene products from murine MHC mutants. Ann. Rev. Genet. 14: 241–277, 1980Google Scholar
  36. N'Guyen, C., Sodoyer, R., Trucy, J., Strachan, T., and Jordan, B. R.: The HLA-AK24 gene: Sequence, surroundings and comparison with the HLA-A2 and HLA-A3 genes. Immunogenetics 21: 479–489, 1985Google Scholar
  37. Ollo, R. and Rougeon, F.: Gene conversion and polymorphism: Generation of mouse immunoglobulin γ2a chain alleles by differential gene conversion by γ2b chain gene. Cell 32: 515–523, 1983Google Scholar
  38. Petruska, J. and Goodman, M. F.: Influence of neighbouring basis on DNA polymerase insertion and proof-reading fidelity. J. Biol. Chem. 260: 7533–7539, 1985Google Scholar
  39. Ploegh, H. L., Orr, H. T., and Strominger, J. L.: Major histocompatibility antigens: The human (HLA-A, -B, -C) and murine (H-2K, H-2D) class I molecules. Cell 24: 287–299, 1981Google Scholar
  40. Schulze, D. H., Pease, L. R., Geier, S. S., Reyes, A. A., Sarmiento, L. A., Wallace, R. B., and Nathenson, S. G.: Comparison of the cloned H-2Kbm1 variant gene with the H-2Kb gene shows a cluster of seven nucleotide differences. Proc. Natl. Acad. Sci. U.S.A. 80: 2007–2011, 1983Google Scholar
  41. Shen, S., Slightom, J. L., and Smithies, O.: A history of the human fetal globin genes duplication. Cell 26: 191–203, 1981Google Scholar
  42. Slightom, J. L., Blechl, A. E., and Smithies, O.: Human fetal Gγ and Aγ globin genes: Complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21: 627–638, 1980Google Scholar
  43. Sodoyer, R., Damotte, M., Delovitch, T. L., Trucy, J., Jordan, B. R., and Strachan, T.: Complete nucleotide sequence of a gene encoding a functional human class I histocompatibility antigen (HLACW3) EMBO J. 3: 879–885,1984Google Scholar
  44. Sodoyer, R., N'Guyen, C., Strachman, T., Samoni, M. Y., Damotte, M., Trucy, J., and Jordan, B. R.: Allelism in the HLA class I multigene family. Ann. Inst. Pasteur 136 C: 71–84, 1985Google Scholar
  45. Steinmetz, M., Moore, K. W., Frelinger, J. G., Sher, B. T., Shen, F. W., Boyse, E. A., and Hood, L.: A pseudogene homologous to mouse transplantation antigens: Transplantation antigens are encoded by eight exons that correlate with protein domains. Cell 25: 683–692, 1981Google Scholar
  46. Steinmetz, M., Winoto, A., Minard, K., and Hood, L.: Clusters of genes encoding mouse transplantation antigens. Cell 28: 489–498, 1982Google Scholar
  47. Stoeckert, C. J., Jr., Collins, F. S., and Weissman, S. M.: Human fetal globin DNA sequences suggest novel conversion event. Nucleic Acids Res. 12: 4469–4479, 1984Google Scholar
  48. Strachan, T., Sodoyer, R., Damotte, M., and Jordan, B. R.: Complete nucleotide sequence of a functional class I HLA gene, HLA-A3: Implications for the evolution of HLA genes. EMBO J. 3: 887–894,1984Google Scholar
  49. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W.: The double-strand-break repair model for recombination. Cell 33: 25–35, 1983Google Scholar
  50. Tykocinsky, M. L. and Max, E. E.: CG dinucleotide clusters in MHC genes and in 5′ demethylated genes. Nucleic Acids Res. 12: 4385–4396, 1984Google Scholar
  51. Wagner, R., Dohet, C., Jones, M., Dautriaux, M. P., Hutchinson, T., and Radman, M.: Involvement of Escherichia coli mismatch repair in DNA replication and recombination. Cold Spring Harbor Symp. Quant Biol. 49: 611–615, 1984Google Scholar
  52. Weiss, E., Golden, L., Zakut, R., Mellor, A., Fahrner, K., Kvist, S., and Flavell, R. A.: The DNA sequence of the H-2Kb gene: Evidence for gene conversion as a mechanism for the generation of polymorphism in histocompatibility antigens. EMBO J. 2: 453–462, 1983Google Scholar
  53. Weiss, E. H., Golden, L., Fahrner, K., Mellor, A. L., Devlin, J. J., Bullman, H., Tiddens, H., Bud, H., and Flavell, R. A.: Organization and evolution of the class I gene family in the major histocompatibility complex of the C57BL/10 mouse. Nature 310: 650–655, 1984Google Scholar
  54. Winoto, A., Steinmetz, M., and Hood, L.: Genetic mapping in major histocompatibility complex by restriction enzyme site polymorphisms: Most mouse class I genes map to the Tla complex. Proc. Nod. Acad. Sci. U.S.A. 40: 3425–3429, 1983Google Scholar
  55. Wolf, S. F. and Migeon, B. R.: Clusters of CpG dinucleotides implicated by nuclease hypersensitivity as control elements of housekeeping genes. Nature 314: 467–469, 1985Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Christian Jaulin
    • 1
  • Arnaud Perrin
    • 1
  • Jean-Pierre Abastado
    • 1
  • Bruno Dumas
    • 1
  • Joseph Papamatheakis
    • 1
  • Philippe Kourilsky
    • 1
  1. 1.Unité de Biologie Moléculaire du Gène, I.N.S.E.R.M. U277, C.N.R.S., Déparement d'ImmunologieInstitut PasteurParis Cédex 15France

Personalised recommendations