Theoretical and Applied Genetics

, Volume 93, Issue 4, pp 626–632 | Cite as

Inheritance and restriction fragment length polymorphism of chloroplast DNA in the genus Coffea L.

  • P. Lashermes
  • J. Cros
  • M. C. Combes
  • P. Trouslot
  • F. Anthony
  • S. Hamon
  • A. Charrier


CpDNA variation among 52 tree samples belonging to 25 different taxa of Coffea and two species of Psilanthus was assessed by RFLP analysis on both the total chloroplast genome and the atpB-rbcL intergenic region. Twelve variable characters were distinguished allowing the identification of 12 different plastomes. The low sequence divergence observed might suggest that Coffea is a young genus. The results were in contradiction with the present classification into two genera. Additionally, cpDNA inheritance was studied in interspecific hybrids between C. arabica and C. canephora, and in an intraspecific progeny of C. canephora, using PCR-based markers. Both studies showed exclusively maternal inheritance of cpDNA.

Key words

Chloroplast DNA Coffea Inheritance RFLP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthony F (1992) Les ressources génétiques des caféiers: collecte, gestion d'un conservatoire et évaluation de la diversité génétique. Collection TDM (81), ORSTOM Ed, ParisGoogle Scholar
  2. Berthaud J (1986) Les ressources génétiques pour l'amélioration des caféiers africains diploïdes. In Collection “Travaux et Documentrd”, No. 188, ORSTOM, Paris, 379 p.Google Scholar
  3. Berthou F, Mathieu C, Vedel F (1983) Chloroplast and mitochondrial DNA variation as an indicator of phylogenetic relationships in the genus Coffea L. Theor Appl Genet 65:77–84Google Scholar
  4. Bremer B, Jansen RK (1991) Comparative restriction-site mapping of chloroplast DNA implies new phylogenetic relationships within the Rubiaceae. Am J Bot 78:198–213Google Scholar
  5. Bridson DM (1987) Nomenclatural notes on Psilanthus, including Coffea sect. Paracoffea (Rubiaceae tribe Coffeeae). Kew Bull 42:453–460Google Scholar
  6. Bridson DM, Verdcourt B (1988) Flora of tropical East Africa — Rubiaceae (part 2). Balkema, Brookfield, RotterdamGoogle Scholar
  7. Charrier A (1978) La structure génétique des caféiers spontanés de la région malgache (Mascarocoffea). Mémoires ORSTOM (87), ORSTOM Ed, ParisGoogle Scholar
  8. Charrier A, Berthaud J (1985) Botanical classification of coffee. In: Clifford MN, Wilson KC (eds), Coffee: botany, biochemistry and production of beans and beverage, Croom Helm, London, pp 13–47Google Scholar
  9. Chong DKX, Chinnappa CC, Yeh FC (1994) Chloroplast DNA inheritance in the Stellaria longipes complex (Caryophyllaceae). Theor Appl Genet 88:614–617Google Scholar
  10. Clegg MT, Zurawski G (1992) Chloroplast DNA and the study of plant phylogeny: present status and future prospects. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 1–13Google Scholar
  11. Corriveau JL, Coleman A (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458Google Scholar
  12. Crawford DJ, Palmer JD, Kobayashi M (1990) Chloroplast DNA restriction-site variation and the phylogeny of Coreopsis section Coreopsis (Asteraceae). Am J Bot 77:552–558Google Scholar
  13. Doyle JL, Doyle JL, Brown AHD (1990) A chloroplast-DNA phylogeny of the wild perennial relatives of soybean: congruence with morphological and crossing groups. Evolution 44:371–389Google Scholar
  14. Gielly L, Taberlet P (1994) The use of chloroplast DNA to resolve plant phylogenies: non-coding versus rbcL sequences. Mol Biol Evol 11:769–777Google Scholar
  15. Hageman R, Schröder MB (1989) The cytological basis of plastid inheritance in angiosperms. Protoplasma 152:57–64Google Scholar
  16. Hamon S, Noirot M, Anthony F (1995) Developing a coffee core collection using the principal components score strategy with quantitative data. In: Hodgkin T, Brown AHD, van Hintum TJL, Morales EAV (eds) Core collections of plant genetic resources, IPGRI. John Wiley, London, pp 117–126Google Scholar
  17. Harris SA, Ingram R (1991) Chloroplast DNA and biosystematics: the effect of intraspecific diversity and plastid transmission. Taxon 40:393–412Google Scholar
  18. Jansen RK, Palmer JD (1987) Chloroplast DNA from lettuce and Barnadesia (Asteraceae): structure, gene localization, and characterization of a large inversion. Curr Genet 11:553–564Google Scholar
  19. Larson SR, Doebley J (1994) Restriction-site variation in the chloroplast genome of Tripsacum (Poaceae): phylogeny and rates of sequence evolution. Syst Bot 19:21–34Google Scholar
  20. Lashermes P, Cros J, Marmey P, Charrier A (1993) Use of random amplified DNA markers to analyze genetic variability and relationships of Coffea species. Genet Res Crop Evol 40:91–99Google Scholar
  21. Lashermes P, Couturon E, Charrier A (1994) Doubled haploids of Coffea canephora: development, fertility and agronomic characteristics. Euphytica 74:149–157Google Scholar
  22. Lee DJ, Blake TK, Smith SE (1988) Biparental inheritance of chloroplast DNA and the existence of heteroplasmic cells in alfalfa. Theor Appl Genet 76:545–549Google Scholar
  23. Leroy JF (1980) Evolution et taxogenèse chez les caféiers: hypothèse sur l'origine. C R Acad Sci (Paris) 291:593–596Google Scholar
  24. Louarn J (1993) Structure génétique des caféiers africains diploïdes basée sur la fertilité des hybrides interspécifiques. 15th Int Sci Colloqium on coffee. ASIC, Paris, pp 243–252Google Scholar
  25. Mason RJ, Holsinger KE, Jansen RK (1994) Biparental inheritance of the chloroplast genome in Coreopsis (Asteraceae). J Hered 85:171–173Google Scholar
  26. Olmstead RG, Palmer JD (1994) Chloroplast DNA systematics: a review of methods and data analysis. Am J Bot 81:1205–1224Google Scholar
  27. Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet 19:325–354Google Scholar
  28. Palmer JD, Shields CR, Cohen DB, Orton TJ (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor Appl Genet 65:181–189Google Scholar
  29. Palmer JD, Jansen RK, Michaels HJ, Chase MW, and Manhart JR (1988) Chloroplast DNA variation and plant phylogeny. Ann Missouri Bot Gard 75:1180–1206Google Scholar
  30. Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140Google Scholar
  31. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491Google Scholar
  32. Schilling EE, Jansen RK (1989) Restriction fragment analysis of chloroplast DNA and the systematics of Viguiera and related genera. Am J Bot 76:1769–1778Google Scholar
  33. Sears BB (1980) Elimination of plastids during spermatogenesis and fertilization in the plant kingdom. Plastid 4:233–255Google Scholar
  34. Sederoff RR, Ronald P, Bedinger P, Rivin C, Walbot V, Bland M, Levings CS (1986) Maize mitochondrial plasmid S-1 sequences share homology with the chloroplast gene psbA. Genetics 113:469–482Google Scholar
  35. Soltis DE, Soltis PS, Bothel (1990) Chloroplast DNA evidence for the origins of the monotypic Bensoniella and Conimitella (Saxifragaceae). Syst Bot 15:349–362Google Scholar
  36. Soltis DE, Soltis PS, Milligan BG (1992) Intraspecific chloroplast DNA variation: systematic and phylogenetic implications. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 117–150Google Scholar
  37. Spichiger R, Savolainen V, Manen JF (1993) Systematic affinities of Aquifoliaceae and Icacinaceae from molecular data analysis. Candollea 48:459–464Google Scholar
  38. Stern DB, Palmer JD (1984) Extensive and widespread homologies between mitochondrial and chloroplast DNA in plants. Proc Natl Acad Sci USA 81:1946–1950Google Scholar
  39. Timmis JN, Scott NS (1983) Sequence homology between spinach nuclear and chloroplast genomes. Nature 305:65–67Google Scholar
  40. Wendel JF, Albert VA (1992) Phylogenetics of the cotton genus (Gossypium). Syst Bot 17:115–143Google Scholar
  41. Wilson MA, Gaut B, Clegg MT (1990) Chloroplast DNA evolves slowly in the palm family (Arecaceae). Mol Biol Evol 7:303–314Google Scholar
  42. Wolff K, Schaal B (1992) Chloroplast DNA variation within and among five Plantago species. J Evol Biol 5:325–344Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • P. Lashermes
    • 1
  • J. Cros
    • 1
  • M. C. Combes
    • 1
  • P. Trouslot
    • 1
  • F. Anthony
    • 2
  • S. Hamon
    • 1
  • A. Charrier
    • 3
  1. 1.ORSTOM, Laboratoire de ressources génétiques et d'amélioration des plantes tropicalesMontpellierFrance
  2. 2.CATIETurrialbaCosta Rica
  3. 3.ENSAMMontpellierFrance

Personalised recommendations