Archives of Microbiology

, Volume 116, Issue 3, pp 275–278 | Cite as

Localization of polyphosphate in vacuoles of Saccharomyces cerevisiae

  • K. Urech
  • M. Dürr
  • Th. Boller
  • A. Wiemken
  • J. Schwencke


Virtually all of the polyphosphate (PP) present in yeast protoplasts can be recovered in a crude particulate fraction if polybase-induced lysis is used for disrupting the protoplasts. This fraction contains most of the vacuoles, mitochondria and nuclei. Upon the purification of vacuoles the PP is enriched to the same extent as are the vacuolar markers. The amount of PP per vacuole is comparable to the amount of PP per protoplast.

The possibility that PP is located in the cell wall is also considered. In the course of the incubation necessary for preparing protoplasts, 20% of the cellular PP is broken down. As this loss of PP occurs to the same extent in the absence of cell wall degrading enzymes, it is inferred that internal PP is metabolically degraded, no PP being located in the cell walls.

It is concluded that in Saccharomyces cerevisiae most if not all of the PP is located in the vacuoles, at least under the growth conditions used.

Key words

Yeast Polyphosphate Compartmentation Vacuole Cell wall 

Non-Standard Abbreviations


piperazine-N,N′-bis-2-ethanolsulfonic acid




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambellan, E., Hollander, V. P.: A simplified assay for RNase activity in crude tissue extracts. Anal. Biochem. 17, 474–484 (1966)Google Scholar
  2. Dawes, E. A., Senior, P. J.: The role and regulation of energy reserve polymers in micro-organisms. In: Advances in microbial physiology, Vol. 10 (A. H. Rose, D. W. Tempest, eds.), pp. 135–266. London-New York: Academic Press 1973Google Scholar
  3. Drews, G.: The cytochemistry of polyphosphates. In: Acides ribonucléiques et polyphosphates; Colloques internationaux du CNRS Strasbourg (1961), pp. 533–544. Paris: Edition du CNRS 1962Google Scholar
  4. Dürr, M., Boller, Th., Wiemken, A.: Polybase induced lysis of yeast spheroplasts. Arch. Microbiol. 105, 319–327 (1975)Google Scholar
  5. Halvorson, H. O., Ellias, L.: The purification and properties of α-glucosidase of Saccharomyces italicus 1225. Biochim. Biophys. Acta 30, 28–40 (1958)Google Scholar
  6. Harold, F. M., Miller, A.: Intracellular localization of inorganic polyphosphate in Neurospora crassa. Biochim. Biophys. Acta 50, 261–270 (1961)Google Scholar
  7. Harold, F. M.: Inorganic polyphosphates in biology: Structure, metabolism, and function. Bacteriol. Rev. 30, 772–794 (1966)Google Scholar
  8. Herbert, D., Phipps, P. J., Strange, R. E.: Chemical analysis of microbial cells. Methods Microbiol. 5B, 209–344 (1971)Google Scholar
  9. Indge, K. J.: Polyphosphates of the yeast cell vacuole. J. gen. Microbiol. 51, 447–455 (1968)Google Scholar
  10. Kulaev, I. S.: Biochemistry of inorganic polyphosphates. Rev. Physiol. Biochem. Pharmacol. 73, 131–158 (1975)Google Scholar
  11. Langen, P., Liss, E., Lohmann, K.: Art, Bildung und Umsatz der Polyphosphate der Hefe. In: Acides ribonucléiques et polyphosphates; Colloques internationaux du CNRS Strasbourg (1961), pp. 603–614. Paris: Edition du CNRS 1962Google Scholar
  12. Leloir, L. F., Cardini, C. E.: Characterization of phosphorus compounds by acid lability. In: Methods in enzymology, Vol. III (S. P. Colowick, N. O. Kaplan, eds.), pp. 840–850. New York: Academic Press 1957Google Scholar
  13. Lohmann, K.: Darstellung der Adenylpyrophosphorsäure aus Muskulatur. Biochem. Z. 233, 460–469 (1931)Google Scholar
  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  15. Mackler, B., Collipp, P. J., Duncan, H. M., Rao, N. A., Huennekens, F. M.: An electron transport particle from yeast: Purification and properties. J. Biol. Chem. 237, 2968–2974 (1962)Google Scholar
  16. Northcote, D. H., Horne, R. W.: The chemical composition and structure of the yeast cell wall. Biochem. J. 51, 232–236 (1952)Google Scholar
  17. Ohnishi, T., Gall, R. S., Mayer, M. L.: An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds: Application to the ATPase assay in the presence of phosphocreatine. Anal. Biochem. 69, 261–267 (1975)Google Scholar
  18. Ramos, F., Thuriaux, P., Wiame, J. M., Béchet, J.: The participation of ornithine and citrulline in the regulation of arginine metabolism of Saccharomyces cerevisiae. Eur. J. Biochem. 12, 40–47 (1970)Google Scholar
  19. Schwencke, J., de Robichon-Szulmajster, H.: The transport of S-adenosyl-L-methionine in isolated yeast vacuoles and spheroplasts. Eur. J. Biochem. 65, 49–60 (1976)Google Scholar
  20. Van der Wilden, W., Matile, Ph., Schellenberg, M., Meyer, J., Wiemken, A.: Vacuolar membranes: Isolation from yeast cells. Z. Naturforsch. 28c, 416–421 (1973)Google Scholar
  21. Wiemken, A., Dürr, M.: Characterization of amino acid pools in the vacuolar compartment of Saccharomyces cerevisiae. Arch. Microbiol. 101, 45–57 (1974)Google Scholar
  22. Wiemken, A.: Isolation of vacuoles from yeast. In: Methods in cell biology, Vol. XII (D. M. Prescott, ed.), pp. 99–109. New York-San Francisco-London: Academic Press 1975Google Scholar
  23. Yemm, E. W., Cocking, E. C.: The determination of amino acids with ninhydrin. Analyst (Lond.) 80, 209–213 (1955)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • K. Urech
    • 1
  • M. Dürr
    • 1
  • Th. Boller
    • 1
  • A. Wiemken
    • 2
  • J. Schwencke
    • 2
  1. 1.Labor für PflanzenphysiologieInstitut für Allgemeine Botanik der ETHZürichSwitzerland
  2. 2.Laboratoire d'EnzymologieC.N.R.S.Gif-sur-YvetteFrance

Personalised recommendations