Advertisement

Pharmacy World and Science

, Volume 18, Issue 3, pp 87–93 | Cite as

New peptide and protein drugs

  • P. Vermeij
  • D. Blok
Review

Abstract

A view is presented on a number of recent developments, the present state and the perspectives, especially from a pharmacotherapeutic viewpoint, for peptide and protein drugs. The expanding use and the increasing experience create new pharmacotherapeutic modalities. Peptide and protein drugs comprise among others proteins isolated from human sources, and peptides and proteins made by biotechnology including monoclonal antibodies, recombinant human hormones, cytokines and growth factors. In the field of vaccine development also innovation is taking place.

Optimal application schemes of these drugs may not have been reached and (clinical) pharmacists should contribute to the optimization. Since recombinant technology has abolished scarcity for a number of these drugs-especially ‘physiological’ substances-special ethical problems regarding an unlimited application or expansion of the indications may arise.

Keywords

Biotechnology products Monoclonal antibodies Peptides Vaccines Cytokines Growth factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Köhler G, Milstein C. Derivatives of specific antibody-producting tissue culture and tumour lines by cell fusions. Eur J Immunol. 1976; 6: 511–19.Google Scholar
  2. 2.
    Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495–497.Google Scholar
  3. 3.
    Watson JD, Tooze J, Kurtz DT. The science used in the recombinant DNA-industry. In: Recombinant DNA, a short course. Scientific American Books. New York, 1983: W.H. Freeman and Company. 231–241.Google Scholar
  4. 4.
    Dinarello CA. Modalities for reduced interleukin-1 activity in disease. TIPS 1993; 14: 155–159.Google Scholar
  5. 5.
    Olijve W. Biotechnologie en geneesmiddelenonderzoek (Biotechnology and drug discovery). Pharm Weekbl 1995; 130: 675–82.Google Scholar
  6. 6.
    Anon. Biotechnology medicines in development. 1993 Survey report. Washington, DC: Pharmaceutical Manufactures Association; 1993.Google Scholar
  7. 7.
    Santeli JP. Projecting future drug expenditures. Am J Hosp Pharm 1995; 52: 158.Google Scholar
  8. 8.
    Silverman JB. A biotech primer. In A biotech primer. New York: Wertheim Schroder & Co, 1992: 1–32.Google Scholar
  9. 9.
    Anonymous. Biotechnology. Pharm Weekbl 1995; 130: 881.Google Scholar
  10. 10.
    Bruton OC. Agammaglobulinemias. Pediatrics 1952; 9: 722–8.Google Scholar
  11. 11.
    Dwyer JM. Manipulating the immune system with immune globulin. New Engl J Med 1992; 326: 107–16.Google Scholar
  12. 12.
    Rees J. Guillain-Barré syndrome. Clinical Manifestations and directions for treatment. Drugs 1995; 49: 912–20.Google Scholar
  13. 13.
    Timmerhuis TPJ, Brouwer PJAM. Intraveneus toegediend immunoglobuline ter behandeling van neurologische aandoeningen. Pharm Weekbl 1994; 129: 732–6.Google Scholar
  14. 14.
    MacDonald JL, Johnson CE. Pathophysiology and treatment of Pathophysiology and treatment of α1-antitrypsin deficiency. Am J Health-Syst Ph 1995; 52: 481–9.Google Scholar
  15. 15.
    Eriksson S. Replacement therapy in alpha1-antitrypsin deficiency. J Intern Med 1989; 225: 69–72.Google Scholar
  16. 16.
    Hubbard RC, Mc Elvaney NG, Sellers SE, Healy JT, Czerski DB, Crystal RG. Recombinant DNA-produced alpha1-antitrypsin administered by aerosol augments lower resporatory tract antineutrophil eleastase defenses in individuals with alpha1-antitrypsine deficiency. J Clin Invest 1989; 84: 1349–54.Google Scholar
  17. 17.
    Burnouf T, Constans J, Clerc A, Descamps J, Martinache L, Goudemand M. Biochemical and biological properties of an alpha1-antitrypsin concentrate. Vox Sang. 1987; 52: 291–7.Google Scholar
  18. 18.
    Press OW, Eary JF, Appelbaum FR, Martin PJ, Nelp WB, Glenn S et al. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet 1995; 346: 336–40.Google Scholar
  19. 19.
    Tami JA, Parr MD, Brown SA, Thompson JS. Monoclonal antibody technology. Am J Hosp Pharm 1986; 43: 2816–25.Google Scholar
  20. 20.
    Kosmas C, Kalofonos H, Epenetos AA. Monoclonal antibodies. Future Potential in Cancer Chemotherapy. Drugs 1989; 38: 645–57.Google Scholar
  21. 21.
    Bach JF, Chatenoud L. Immunologic Monitoring of Orthoclone OKT3-treated Patients: The Problem of Antimonoclonal Immune Response. Transplantation Proceedings 1987; 19: 17–20.Google Scholar
  22. 22.
    Ziegler EJ, Fisher CJ, Sprung CL, Straube RC, Sadoff JC, Garrett E et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monocione antibody against endotoxin: a randomized, double-blind, placebo-controlled trial. N Engl J Med 1991; 324: 429–36.Google Scholar
  23. 23.
    Hurley JC. Sepsis management and antiendotoxin therapy after nebacumab. drugs 1994; 47: 855–61.Google Scholar
  24. 24.
    Bakke OM, Manocchia M, Abajo Fde, Kaitin KI, Lasagna L. Drug safety discontinuations in the United Kingdom, the United States, and Spain from 1974 through 1993: a regulatory perspective. Clin Pharmacol Ther 1995; 58: 108–17.Google Scholar
  25. 25.
    Susla GM, Dew RB. Antiendotoxin monoclonal antibodies. What future now? Drug Safety 1994; 11: 215–22.Google Scholar
  26. 26.
    Faults D, Sorkin EM, Abciximab (c7E3 Fab). A Review of its Pharmacology and Therapeutic Potential in Ischaemic Heart Disease. Drugs 1994; 48: 583–98.Google Scholar
  27. 27.
    Derkx B, Taminiau J, Radema S, Stronkhorst A, Wortel C, Tytgat GNJ et al. Tumour necrosis factor antibody treatment in Crohn's disease. Lancet 1993; 342: 173–4.Google Scholar
  28. 28.
    Elliot MJ, Maini RN, Feldmann M, Kladen JR, Natoni C, Smolen JS et al. Randomised double blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. Lancet 1994; 344: 1104–10.Google Scholar
  29. 29.
    Knight DM, Trink H, Le J, Siegel S, Shealy D, Mc Donough M et al. Construction and initial characterization of a mouse-human anti-TNF-antibody. Molecular Immunology 1993; 30: 1443.Google Scholar
  30. 30.
    Hoefnagel CA. Radionuclide therapy revisited. Eur J Nucl Med 1991; 18: 408–31.Google Scholar
  31. 31.
    Collier BD, Foley WD. Current imaging strategies for colorectal cancer. J Nucl Med 1993; 34: 537–40.Google Scholar
  32. 32.
    Krag DN. Clinical utility of immunoscintigraphy in managing ovarian cancer. J Nucl Med 1993; 34: 545–48.Google Scholar
  33. 33.
    Serafini AN. From monoclonal antibodies to peptides and molecular recognition units: An Overview. J Nucl Med 1993; 34: 533–36.Google Scholar
  34. 34.
    Jörgensen JOL, Pedersen SA, Thuesen L, Jörgensen J, Ingemann-Hansen T, Skakkebaek NE et al. Beneficial effects of growth hormone treatment in growth hormone deficient adults. Lancet 1989; i: 1221–5.Google Scholar
  35. 35.
    Salomon F, Cuneo RC, Hesp R, Sönksen PH. The effects of treatment with recombinant human growth hormone on body composition and metabolism in adults with growth hormone deficiency. N Engl J Med 1989; 321: 1797–1803.Google Scholar
  36. 36.
    Powrie J, Weissberger A, Sönksen P. Growth Hormone replacement therapy for growth hormone-deficient adults. Drugs 1995; 49: 656–63.Google Scholar
  37. 37.
    Brook CGD. Who's for growth hormone? Br Med J 1991; 304: 131–2.Google Scholar
  38. 38.
    Darendeliler F, Hindmarsh PC, Brook CGD. Dose response curves for treatment with biosynthetic human growth hormone. J Endocrinol 1990; 125: 311–6.Google Scholar
  39. 39.
    Wit JM, Boersma B, De MuinckKeizer-Schrama SMPF, Nienhuis HE, Oostdijk W, Otten BJ, et al. Long term results of growth hormone therapy in children with short stature, subnormal growth rate and normal growth hormone response to secretagogues. Clin Endocrinology 1995; 42: (in press).Google Scholar
  40. 40.
    Stanhoper, Preece MA, Hamill G. Does growth hormone treatment improve final height attainment of children with intrauterin growth retardation? Arch Dis Child 1991; 66: 1180–3.Google Scholar
  41. 41.
    Cianfarani S, Vaccaro F, Boscherini B. What is the rationale for growth hormone therapy in Turner's syndrome? Lancet 1994; 344: 114–115.Google Scholar
  42. 42.
    Bryson HM, Sorkin EM. Dornase Alfa. A review of its pharmacological properties and therapeutic potential in cystic fibrosis. Drugs 1994; 48: 894–906.Google Scholar
  43. 43.
    DeRenzo EC, Süteri PK, Hutchings BL, Bell PH. Preparation and certain properties of highly purified streptokinase. J Biol Chem 1967; 137: 533–42.Google Scholar
  44. 44.
    Anderson JL. Development and evaluation of anisoylated streptokinase activator complex (APSAC) as a second generation thrombolytic agent. J Am Coll Cardiol 1987; 10: 22B-7B.Google Scholar
  45. 45.
    Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CH et al. Cloning and expression of human tissue-type plasminogen activator cDNA in E.coli. Nature 1983; 301: 214–21.Google Scholar
  46. 46.
    International joint Efficacy Comparison of Thrombolytics. Randomised, double blind comparison of reteplase double-bolus administration with streptokinase in acute myocardial infarction (INJECT): trial to investigate equivalence. Lancet 1995; 346: 329–36.Google Scholar
  47. 47.
    Verstraete M. Use of thrombolytic drugs in non-coronary disorders. Drugs 1989; 38: 801–21.Google Scholar
  48. 48.
    Schaik BAMvan. Myocardinfarct 1993, nieuwe therapieën. Pharm Weekbl 1994; 129: 18–20.Google Scholar
  49. 49.
    GISSI-2: a factorial randomised trial of alteplase versus streptokinase and heparin versus no heparin among 12, 490 patients with acute myocardial infarction. Lancet 1990; 336: 65–71.Google Scholar
  50. 50.
    ISIS-3: A randomised comparison of streptokinase versus tissue plasminogen activator versus anistreplase and of aspirin and heparin versus heparin alone among 41, 229 cases of suspected acute myocardial infarction. Lancet 1992; 339: 753–70.Google Scholar
  51. 51.
    The Gusto Angiographic Investigators. The effects of tissue clasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med 1993; 329: 1615–22.Google Scholar
  52. 52.
    Ketley D, Woods KL. Impact of clinical trials on clinical practice: example of thrombolysis for acute myocardial infarction. Lancet 1993; 342: 891–4.Google Scholar
  53. 53.
    Fibrinolytic Therapy Trialists (FTT) collaborative Group. Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of mortality and major morbidity results from all randomised trials of more than 1000 patients. Lancet 1994; 343: 311–322.Google Scholar
  54. 54.
    Griensven JMTh van. Causes of variability in the pharmacokinetics of thrombolytic drugs. Leiden University, Thesis, 1995.Google Scholar
  55. 55.
    Buchalter MB. Is the development of antibodies to streptokinase clinically relevant? Drugs 1994; 48: 133–36.Google Scholar
  56. 56.
    Arai KI, Lee F, Miyajiama A, Miyatake S, Arai N, Yokota T. Cytokines: coordinators of immune and inflammatory response. Ann Rev Biochem 1990; 59: 783–836.Google Scholar
  57. 57.
    Sporn MB, Roberts AB, editors. Peptide growth factors and their receptors I and II: handbook of experimental pharmacology 95/I and 95/II. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer Verlag 1990.Google Scholar
  58. 58.
    Vlasveld LT, Koks CWH, Beijnen JH. Aldesleukine (Proleukin®). Pharm Weekbl 1995; 130: 296–299.Google Scholar
  59. 59.
    Grüss H-J, Dower SK. The TNF ligand superfamily and its relevance for human diseases. Cytokines and Molecular Ther 1995; 1: 75–105.Google Scholar
  60. 60.
    Aulitzky WE, Schuler M, Peschel C, Huber C. Interleukins. Clinical Pharmacology and therapeutic use. Drugs 1994; 48: 667–677.Google Scholar
  61. 61.
    DeVries EGE, Vellenga E, Willemse PHB. Hematopoetische groeifactoren in de oncologie; heden en toekomst. Pharm Weekbl 1995; 130: 751–5.Google Scholar
  62. 62.
    Whittington R, Faulds d. Interleukin-2: a review of its pharmacological properties and therapeutic use in patients with cancer. Drugs 1993; 46: 446–514.Google Scholar
  63. 63.
    Biesma B, Vellenga E, Willemse PHB, DeVries EGE. Effects of hematopoetic growth factors on chemotherapie-induced myelosuppression. Crit Rev Oncol/Hematol 1992; 13: 107–34.Google Scholar
  64. 64.
    Summerhayes M. Myeloïd haematopoetic growth factors in clinical practice — a comparative review, part I. European Hospital Pharmacy 1995; 1: 30–36.Google Scholar
  65. 65.
    Summerhayes M. Myeloid haematopoetic growth factors in clinical practice — a comparative review, part II. European Hospital Pharmacy 1995; 1: 67–74.Google Scholar
  66. 66.
    Sahai J, Louie SG. Overview of the immune and hematopoetic systems. Am J Hosp Pharm 1993; 50 (suppl.3): 54–9.Google Scholar
  67. 67.
    Louie SG, Jung B. Clinical effects of biologic response modifiers. Am J Hosp Pharm 1993; 50 (suppl.3): S10–8.Google Scholar
  68. 68.
    Damm JBL. Application of glycobiology in the biotechnological production of pharmaceuticals. Pharm Technology Europe 1995; september: 28–34.Google Scholar
  69. 69.
    Frampton JE, Lee CR, Faulds D. Filgrastim: a review of its pharmacological properties and therapeutic efficacy in neutropenia. Drugs 1994; 48: 731–60.Google Scholar
  70. 70.
    Frampton JE, Yarker YE, Goa KL. Lenograstim: a review of its pharmacological properties and therapeutic efficacy in neutropenia and related clinical settings. Drugs 1995; 49: 767–793.Google Scholar
  71. 71.
    Anonymous. Richtlijn gebruik hematopoiëtische groeifactoren (G en GM-CSF). Utrecht 1994. Vereniging van Integrale Kankercentra.Google Scholar
  72. 72.
    Anonymous. American Society of Clinical Oncology recommendations for the use of hematopoietic colony-stimulating factors: evidencebased, clinical practice guidelines. J Clin Oncol 1994; 12: 2471–508.Google Scholar
  73. 73.
    Faulds D, Sorkin EM. Epoetin (recombinant human erythropoetin). A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in anaemia and the stimulation of erythropoeisis. Drugs 1989; 38: 863–99.Google Scholar
  74. 74.
    Markham A, Bryson HM. Epoetin alfa. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in nonrenal applications. Drugs 1995; 49: 232–54.Google Scholar
  75. 75.
    Claas ECJ, Rimmelzwaan GF, Osterhaus ADME. Virus vaccins en vaccinontwikkeling (Virus vaccines and vaccine development). Pharm Weekbl 1995; 130: 700–4.Google Scholar
  76. 76.
    Fynan EF, Webster RG, Fuller DH, Hayne JR, Santoro JC, Robinson HL. DNA vaccines: a novel approach to immunization. Int J. Immunopharmac. 1995; 17: 79–83.Google Scholar
  77. 77.
    Winkler B, Richart RM. Human papillomavirus and gynecologie neoplasia. Curr. Probl Obstet Gynecol. Fertel 1987; 10: 49–90.Google Scholar
  78. 78.
    Feltkamp MCW, Smits HL, Vierboom MPM, Minnaar RP, deJong BM, Drijfhout JW et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumour induced by human papilloma virus type 16 — transformed cells. Europ J Immunol 1993; 23: 2242–49.Google Scholar
  79. 79.
    Pardoll DM. Cancer vaccines. Tips 1993; 14: 202–08.Google Scholar
  80. 80.
    Filicori M. Gonadrophin-releasing hormone agonists. drugs 1994; 48: 41–58.Google Scholar
  81. 81.
    Lee VHL. Peptide and protein drug delivery: opportunities and challenges. Pharmacy Internat August 1986; 208–12.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • P. Vermeij
    • 1
  • D. Blok
    • 1
  1. 1.Department of Glinical Pharmacy and ToxicologyLeiden University HospitalLeidenThe Netherlands

Personalised recommendations