Advertisement

Bioprocess Engineering

, Volume 13, Issue 5, pp 245–250 | Cite as

A fedbatch strategy for optimal red pigment production by monascus ruber

  • A. Laurence Santerre
  • I. Queinnec
  • P. J. Blanc
Originals

Abstract

According to the measurement of the pigment production and some material balance treatments, the monosodium glutamate (MSG), which represents a main substrate involved in the production of red pigment by Monascus ruber, is recovered on-line. Fedbatch operation then represents an alternative for increasing the production of pigment. A nonlinear quotient control scheme is expressed to regulate the monosodium glutamate substrate at an optimal value determined from batch studies.

Keywords

Waste Water Glutamate Water Management Water Pollution Material Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols

A

absorbancy units (AU)

L

lightness parameter

Pig

red pigment quantity (Gmol)

vol

fermentor active volume (1)

γ

empirical coefficient

MWpig

red pigment molecular weight (g)

E

elementary matrix

E#

pseudo-inverse elementary matrix

r

conversion rates vector (g· l−1·h−1)

Em

measured part of the elementary matrix

rm

measured conversion rates vector

Ec

non-measured part of the elementary matrix

rc

non-measured conversion rates vector

v

fictitious controller input

h

fictitious controller output

u

controller input

y

controller output

y

controller setpoint

k1

controller parameter

k2

controller parameter

k

time iteration

MSG

monosodium glutamate concentration (g·l−1)

MSGinit

monosodium glutamate initial quantity (g)

MSGadded

total quantity of monosodium glutamate added (g)

MSGcons

total quantity of monosodium glutamate consumed (g)

MWmsg

monosodium glutamate molecular weight (g)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turner W.B.: Fungal metabolites: polyketides, chapter 5, pp. 74–213. Academic Press London, New York (1971)Google Scholar
  2. 2.
    Zhang G.: Production de colorants alimentaires par fermentation immergée. Doctor Thesis of INSA Toulouse France (1989)Google Scholar
  3. 3.
    Wong H.C.; Koehler P.E.: Production of red water soluble Monascus pigments. J. Food Sci. 48 (1983) 1200–1203Google Scholar
  4. 4.
    Mak N.K.; Fong W.F; Wong-Leung Y.I.: Improved fermentative production of Monascus pigment in roller bottle culture. Enzyme Microb. Technol. 12 (1990) 965–968Google Scholar
  5. 5.
    Evans P.J.; Wang H.Y.: Pigment production from immobilized Monascus sp. utilizing polymeric resin adsorption. Applied and Environ. Microbiol. 47-6 (1984) 1323–1326Google Scholar
  6. 6.
    Lotong N.; Suwanarit P.: Fermentation of ang-kak in plastic bags and regulation of pigmentation by initial moisture content. J. Appl. Bact. 68 (1990) 965–968Google Scholar
  7. 7.
    Chiu S.W; Poon Y.K.: Submerged production of Monascus pigments. Mycologia 85-2 (1993) 214–218Google Scholar
  8. 8.
    Lin T.F.; Demain A.L.: Effect of nutrition of Monascus sp. on formation of red pigments. Appl. Microbiol. Biotechnol. 36 (1991) 70–75Google Scholar
  9. 9.
    Lin C.F.: Isolation and cultural conditions of Moncascus sp. for the production of pigment in a submerged culture. J. Ferment. Technol. 51-6 (1973) 407–414Google Scholar
  10. 10.
    Pastrana L.; Blanc P.J.; Santerre A.L.; Loret M.O.; Goma G.: Production of red pigments by Monascus ruber in synthetic media with a stritly controlled nitrogen source. Process Biochemistry 29 (1994)Google Scholar
  11. 11.
    Roels J.A.: Energetics and kinetics in Biotechnology. Elsevier Biomedical Press, Amsterdam, The Netherlands (1983)Google Scholar
  12. 12.
    Santerre A.L.; Queinnec I.; Destruhaut C.; Pourciel J.B.; Blanc P.J.: On-line evaluation of fermentation broth colour. Biotechnology Techniques 8-5 (1994) 319–324Google Scholar
  13. 13.
    Queinnec I.; Destruhaut C.; Pourciel, J.B.; Goma G.: An effective automated glucose sensor for fermentation monitoring and control. World J. Microbiol. Biotechnol. 8 (1991) 7–13Google Scholar
  14. 14.
    Madron F.: Material-balance calculations of fermentation processes. Biotechnol. Bioeng. 21 (1979) 1487–1490Google Scholar
  15. 15.
    Heijden R.T.J.M. van der.; Heijnen J.J.; Hellinga C.; Romein B.; Luyben K.Ch.A.M.: Linear constraint relations in biochemical reactions systems: 1. Classification of the calculability and the balanceability of conversion rates. Biotechnol. Bioeng. 43 (1994) 3–10Google Scholar
  16. 16.
    Santerre A.L.: Contribution à la maîtrise des productions de metabolites secondaires de monascus ruber en fermentation immergée. Doctor Thesis of INSA Toulouse France (1994)Google Scholar
  17. 17.
    Dahhou B.; Lakrori M.; Queinnec I.; Ferret E.; Chéruy A.: Control of a continuous fermentation process. J. Proc. Control 2-2 (1992) 103–111Google Scholar
  18. 18.
    Vigié P.; Dahhou B.; Queinnec FI.; Lakrori 7.; Chéruy A.; Pourciel J.B.: Control of substrate concentration in a continuous bioprocess. Bioprocess Engineering 6-6 (1991) 259–263Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • A. Laurence Santerre
    • 1
  • I. Queinnec
    • 2
  • P. J. Blanc
    • 1
  1. 1.Centre de Bioingénierie Gilbert Durand, URA 544, Equipe associée INRADGBA-INSA, Complexe scientifique de rangueilToulouse cedexFrance
  2. 2.Laboratoire d'Analyse et d'Architecture des Systèmes-CNRSToulouse cedexFrance

Personalised recommendations