Letters in Mathematical Physics

, Volume 11, Issue 1, pp 73–80 | Cite as

Lorentz invariance vs. temperature in QFT

  • Izumi Ojima


The Lorentz invariance of a relativistic QFT is shown to be broken spontaneously at finite temperature with a zero-energy Goldstone spectrum which does not necessarily carry a one-particle structure. The Lorentz behaviour of the temperature is determined and the relation between Gibbs states in different Lorentz frames is clarified.


Statistical Physic Group Theory Finite Temperature Lorentz Invariance Gibbs State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    EinsteinA., Jahrbuch Radioakt. Elektronik 4, 411 (1907); Tolman, R. C., Relativity, Thermodynamics and Cosmology, Oxford Univ. Press, London, 1934.Google Scholar
  2. 2.
    OttH., Z. Physik 175, 70 (1963); Landsberg, P. T., in G. K. T. Conn and G. N. Fowler (eds.), Essays in Physics, vol. 2, pp. 93–129; P. T. Landsberg, Phys. Rev. Lett. 45, 149 (1980).Google Scholar
  3. 3.
    OjimaI., in K.Kikkawa, N.Nakanishi and Nariai (eds.), Gauge Theory and Gravitation, Proc. of the Intern. Symp. on Gauge Theory and Gravitation held in Nara, Japan, August 1982, Lecture Notes in Physics, Vol. 176, Springer-Verlag, Berlin, Heidelberg, New York, 1983.Google Scholar
  4. 4.
    Ojima, I., Seminar talks at Università di Salerno, Université de Dijon and Max-Planck-Institut für Physik und Astrophysik in 1983.Google Scholar
  5. 5.
    GirardelloL., GrisaruM. T., and SalomonsonP., Nucl. Phys. B178, 313 (1981); Teshima K., Phys. Lett. 123B, 226 (1983); Aoyama H. and Boyanovsky D., Phys. Rev. D30, 1556 (1984).Google Scholar
  6. 6.
    MatsumotoH., NakaharaH., NakanoY., and UmezawaH., Phys. Rev. D29, 2838 (1984).Google Scholar
  7. 7.
    KuboK., J. Phys. Soc. Japan 12, 570 (1957); Martin P. C. and Schwinger J., Phys. Rev. 115, 1342 (1959).Google Scholar
  8. 8.
    BratteliO. and RobinsonD. W., Operator Algebras and Quantum Statistical Mechanics, Vols. 1 and 2, Springer-Verlag, Berlin, Heidelberg, New York, 1979 and 1981.Google Scholar
  9. 9.
    TakahashiY. and UmezawaH., Collective Phenomena 2, 55 (1979): Ojima, I., Ann. Phys. 137, 1 (1981); Matsumoto, H., Ojima, I., and Umezawa, H., Ann. Phys. 152, 348 (1984).Google Scholar
  10. 10.
    NelsonP. and Alvarez-GauméL., Commun. Math. Phys. 99, 103 (1985).Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Izumi Ojima
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations