Archives of Microbiology

, Volume 110, Issue 1, pp 61–75 | Cite as

Characterization and structural properties of the major biliproteins of Anabaena sp.

  • Donald A. Bryant
  • Alexander N. Glazer
  • Frederick A. Eiserling
Article

Abstract

Studies are presented of the biliproteins of Anabaena sp. This filamentous cyanobacterium contains three major biliproteins. Whereas two of these, C-phycocyanin and allophycocyanin, are common to all cyanobacteria, the third, phycoerythrocyanin (λmax∼568nm) has hitherto not been described and its distribution among cyanobacteria appears to be limited.

Anabaena variabilis and Anabaena sp. 6411 allophycocyanin, C-phycocyanin, and phycoerythrocyanin were purified to homogeneity and characterized with respect to molecular weight, isoelectric point, absorption spectrum and amino acid composition. The α and β subunits of each of these proteins were also purified to homogeneity and characterized in the same manner. The tetrapyrrole chromophore content was determined for each of the proteins and subunits. The α subunit of phycoerythrocyanin carries a novel phycobiliviolin-like chromophore. This chromophore has not previously been detected in cyanobacterial biliproteins, but has been noted as a prosthetic group of a cryptophytan phycocyanin.

Sedimentation equilibrium studies show that at pH 7.0, at protein concentrations of 0.2–0.6 mg/ml, allophycocyanin, C-phycocyanin and phycoerythrocyanin, each exists as a trimeric aggregate, (αβ)3, of molecular weight of approximately 105000. Structural studies of microcrystals of these three biliproteins by electron microscopy and X-ray diffraction reveal a common plan for the construction of higher assembly forms. The major building block appears to be the trimer (αβ)3. It is proposed that this is a dise-like structure about 3.0×12.0 nm. The individual α or β subunits are roughly spherical, 3 nm in diameter. Allophycocyanin trimers stack to form bundles of rods which form long needles. Both phycocyanin and phycoerythrocyanin form double dises (αβ)6 which are visible as ring-shaped structures by electron microscopy. The mode of assembly of the biliproteinstructures in the phycobilisome is, as yet, unknown.

Key words

Biliproteins Phycoerythrocyanin Assembly forms Anabaena sp. Photosynthesis 

Abbreviation Used

SDS

sodium dodecyl sulfate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebi, U., Smith, P. R., Dubochet, J., Henry, C., Kellenberger, E.: A study of the structure of the T-layer of Bacillus brevis. J. supramolec. Struct. 1, 498–522 (1973)Google Scholar
  2. Bennett, A., Bogorad, L.: Properties of subunits and aggregates of blue-green algal biliproteins. Biochemistry 10, 3625–3634 (1971)Google Scholar
  3. Berns, D. S., Edwards, M. R.: Electron micrographic investigations of C-phycocyanin. Arch. Biochem. Biophys. 110, 511–516 (1965)Google Scholar
  4. Bogorad, L.: Phycobiliproteins and complementary chromatic adaptation. Ann. Rev. Plant Physiol. 26, 369–401 (1975)Google Scholar
  5. Bouillenne-Walrand, M., Delarge, L.: Contribution à l'étude des pigments végétaux. I. Extraction et crystallisation de la phycocyanine de Phormidium uncinatum Gom. Rev. gén. Bot. 49, 537–557 (1937)Google Scholar
  6. Brown, A. S., Foster, J. A., Voynow, P. V., Franzblau, C., Troxler, R. F.: Allophycocyanin from the filamentous cyanophyte, Phormidium luridum. Biochemistry 14, 3581–3588 (1975).Google Scholar
  7. Chapman, D. J.: Biliproteins and bile pigments. In: The biology of blue-green algae (N. G. Carr, B. A. Whitton, eds.), pp. 162–185. Berkeley-Los Angeles: University of California Press 1973Google Scholar
  8. Chapman, D. J., Cole, W. J., Siegelman, H. W.: Chromophores of allo-phycocyanin and R-phycocyanin. Biochem. J. 105, 903–905 (1967)Google Scholar
  9. Davis, B. J.: Disc electrophoresis-II. Method and application to human serum proteins. Ann. N. Y. Acad. Sci. 121, 404–427 (1964)Google Scholar
  10. Dobler, M., Dover, S. D., Laves, K., Binder, A., Zuber, H.: Crystallization and preliminary crystal data of C-phycocyanin. J. mol. Biol. 71, 785–787 (1972)Google Scholar
  11. Edwards, M. R., Berns, D., Ghiorse, W. C., Holt, S. C.: Ultrastructure of the thermophilic blue-green alga, Synechococcus lividus Copeland. J. Phycology 4, 283–298 (1968)Google Scholar
  12. Edwards, M. R., Gantt, E.: Phycobilisomes of the thermophilic blue-green alga Synechococcus lividus. J. Cell Biol. 50, 896–900 (1971)Google Scholar
  13. Eiserling, F. A., Glazer, A. N.: Blue-green algal proteins: Assembly forms of C-phycocyanin from Synechococcus sp. J. Ultrastruct. Res. 47, 16–25 (1974)Google Scholar
  14. Gantt, E., Conti, S. F.: The ultrastructure of Porphyridium cruentum. J. Cell. Biol. 26, 365–381 (1965)Google Scholar
  15. Gantt, E., Conti, S. F.: Phycobiliprotein localization in algae. Brookhaven Symp. Biol. 19, 393–405 (1966a)Google Scholar
  16. Gantt, E., Conti, S. F.: Granules associated with the chloroplast lamellae of Porphyridium cruentum. J. Cell Biol. 29, 423–434 (1966b)Google Scholar
  17. Gantt, E., Conti, S. F.: Ultrastructure of blue-green algae. J. Bact. 97, 1486–1493 (1969)Google Scholar
  18. Gantt, E., Lipschultz, C. A.: Phycobilisomes of Porphyridium cruentum. I. Isolation. J. Cell Biol. 54, 313–324 (1972)Google Scholar
  19. Gantt, E., Lipschultz, C. A.: Phycobilisomes of Porphyridium cruentum: Pigment analysis. Biochemistry 13, 2960–2966 (1974)Google Scholar
  20. Glazer, A. N.: Phycocyanins: Structure and function. Photochem. Photobiol. Rev. 1, 71–115 (1976)Google Scholar
  21. Glazer, A. N., Apell, G. S., Hixson, C. S., Bryant, D. A., Rimon, S., Brown, D. M.: Biliproteins of cyanobacteria and rhodophyta: A homologous family of photosynthetic accessory pigments. Proc. nat. Acad. Sci. (Wash.) 73, 428–431 (1976)Google Scholar
  22. Glazer, A. N., Bryant, D. A.: Allophycocyanin B (λmax 671, 618nm): A new cyanobacterial phycobiliprotein. Arch. Microbiol. 104, 15–22 (1975)Google Scholar
  23. Glazer, A. N., Cohen-Bazire, G.: Subunit structure of the phycobiliproteins of blue-green algae. Proc. nat. Acad. Sci. (Wash.) 68, 1398–1401 (1971)Google Scholar
  24. Glazer, A. N., Cohen-Bazire, G.: A comparison of cryptophytan phyocyanins. Arch. Microbiol. 104, 29–32 (1975)Google Scholar
  25. Glazer, A. N., Cohen-Bazire, G., Stanier, R. Y.: Comparative immunology of algal biliproteins. Proc. nat. Acad. Sci. (Wash.) 68, 3005–3008 (1971)Google Scholar
  26. Glazer, A. N., Fang, S.: Chromophore content of blue-green algal phycobiliproteins. J. biol. Chem. 248, 659–662 (1973a)Google Scholar
  27. Glazer, A. N., Fang, S.: Formation of hybrid proteins from the α and β subunits of phycocyanins of unicellular and filamentous blue-green algae. J. biol. Chem. 248, 663–671 (1973b)Google Scholar
  28. Glazer, A. N., Fang, S., Brown, D. M.: Spectroscopic properties of C-phycocyanin and of its α and β subunits. J. biol. Chem. 248, 5679–5685 (1973)Google Scholar
  29. Glazer, A. N., Hixson, C. S.: Characterization of R-phycocyanin. Chromophore content of R-phycocyanin and C-phycoerythrin. J. biol. Chem. 250, 5487–5495 (1975)Google Scholar
  30. Gray, G. H., Gantt, E.: Spectral properties of phycobilisomes and phycobiliproteins from the blue-green alga Nostoc sp. Photochem. Photobiol. 21, 121–128 (1975)Google Scholar
  31. Gray, B. H., Lipschultz, C. A., Gantt, E.: Phycobilisomes from a blue-green alga Nostoc species. J. Bact. 116, 471–478 (1973)Google Scholar
  32. Gysi, J., Zuber, H.: Isolation and characterization of allophycocyanin II from the thermophilic blue-green alga Mastigocladus laminosus Cohn. FEBS Lett. 48, 209–213 (1974)Google Scholar
  33. Halldal, P.: Pigment formation and growth in blue-green algae in crossed gradients of light intensity and temperature. Physiol. Plant. 11, 401–420 (1958)Google Scholar
  34. Halldal, P.: The photosynthetic apparatus of microalgae and its adaptation to environmental factors. In: Photobiology of microorganisms (P. Halldal, ed.), pp. 17–55. Wiley: London 1970Google Scholar
  35. Hattori, A., Fujita, Y.: Crystalline phycobilin chromoproteids obtained from a blue-green alga, Tolypothrix tenuis. J. Biochem. (Tokyo) 46, 633–644 (1958)Google Scholar
  36. Hirs, C. H. W.: The oxidation of ribonuclease with performic acid. J. biol. Chem. 219, 611–621 (1956)Google Scholar
  37. Kratz, W. A., Myers, J.: Nutrition and growth of several blue-green algae. Amer. J. Bot. 42, 282–287 (1955)Google Scholar
  38. Köst, H. P., Rüdiger, W., Chapman, D. J.: Über die Bindungen zwischen Chromophor und Protein in Biliproteiden. I. Abbauversuche und Spektraluntersuchungen an Biliproteiden. Liebigs Ann. Chem. 1582–1593 (1975)Google Scholar
  39. Kylin, H.: Über Phykoerythrin und Phykocyan bei Ceramium rubrum (Huds.) Ag. Hoppe-Seylers Z. physiol. Chem. 69, 169–239 (1910)Google Scholar
  40. Lefort-Tran, M., Cohen-Bazire, G., Pouphile, M.: Les membranes photosynthétiques des algues à biliproteines observées après cryodécapage. J. Ultrastruct. Res. 44, 199–209 (1973)Google Scholar
  41. Liu, T. Y., Chang, Y. H.: Hydrolysis of proteins with p-toluenesulfonic acid. Determination of tryptophan. J. biol. Chem. 246, 2842–2848 (1971)Google Scholar
  42. MacColl, R., Edwards, M. R., Mulks, M. H., Berns, D. S.: Comparison of the biliproteins from two strains of the thermophilic cyanophyte Synechococcus lividus. Biochem. J. 141, 419–425 (1974)Google Scholar
  43. MacColl, R., Habig, W., Berns, D. S.: Characterization of phycocyanin from Chroomonas species. J. biol. Chem. 248, 7080–7086 (1973)Google Scholar
  44. Mörschel, E., Wehrmeyer, W.: Cryptomonad biliprotein: Phycocyanin-645 from a Chroomonas species. Arch. Microbiol. 105, 153–158 (1975)Google Scholar
  45. Molisch, H.: Das Phycocyan, ein krystallisierbarer Eiweißkörper. Bot. Z. 53, 131–135 (1895)Google Scholar
  46. Neufeld, G. J., Riggs, A.: Aggregation properties of C-phycocyanin from Anacystis nidulans. Biochim. Biophys. Acta 181, 234–243 (1969)Google Scholar
  47. O'Carra, P.: Algal biliproteins. Biochem. J. 119, 2P-3P (1970)Google Scholar
  48. O'hEocha, C.: Chemical studies of phycoerythrins and phycocyanins. In: Comparative biochemistry of photoreactive systems (M. B. Allen, ed.), pp. 181–203. London: Academic Press 1960Google Scholar
  49. O'hEocha, C.: Spectral properties of the phycobilins. I. Phycocyanobilin. Biochemistry, 2, 375–382 (1963)Google Scholar
  50. Siegelman, H. W., Chapman, D. J., Cole, W. J.: The bile pigments of plants. Biochem. Soc. Symp. 28, 107–120 (1968)Google Scholar
  51. Siegelman, H. W., Wieczorek, G. A., Turner, B. C.: Preparation of calcium phosphate for protein chromatography. Analyt. Biochem. 13, 402–404 (1965)Google Scholar
  52. Stanier, R. Y.: The origins of photosynthesis in eukaryotes. Symp. Soc. gen. Microbiol. 24, 219–240 (1974)Google Scholar
  53. Stanier, R. Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G.: Purification and properties of unicellular blue-green algae (Order Chroococcales). Bact. Rev. 35, 171–205 (1971)Google Scholar
  54. Svedberg, T., Katsurai, T.: The molecular weights of phycocyan and of phycoerythrin from Porphyra tenera and of phycocyan from Aphanizomenon flos-aquae. J. Amer. chem. Soc. 51, 3573–3583 (1929)Google Scholar
  55. Svedberg, T., Lewis, N. B.: The molecular weights of phycoerythrin and of phycocyan. J. Amer. chem. Soc. 50, 525–536 (1928)Google Scholar
  56. Teale, F. W. J., Dale, R. E.: Isolation and spectral characterization of phycobiliproteins. Biochem. J. 116, 161–169 (1970)Google Scholar
  57. Valentine, R. C., Shapiro, B. M., Stadtman, E. R.: Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 7, 2143–2152 (1968)Google Scholar
  58. Weber, K., Osborn, M.: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. biol. Chem. 244, 4206–4412 (1969)Google Scholar
  59. Wildman, R. B., Bowen, C. C.: Phycobilisomes in blue-green algae. J. Bact. 117, 866–881 (1974)Google Scholar
  60. Wrigley, C.: Gel electrofocusing—a technique for analyzing multiple protein samples by isoelectric focusing. Sci. Tools 15, 17–23 (1968)Google Scholar
  61. Yphantis, D. A.: Equilibrium ultracentrifugation of dilute solutions. Biochemistry 3, 297–317 (1964)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Donald A. Bryant
    • 1
    • 2
    • 3
  • Alexander N. Glazer
    • 1
    • 2
    • 3
  • Frederick A. Eiserling
    • 1
    • 2
    • 3
  1. 1.Department of Biological Chemistry (UCLA School of Medicine)University of CaliforniaLos AngelesUSA
  2. 2.Department of BacteriologyUniversity of CaliforniaLos AngelesUSA
  3. 3.the Molecular Biology InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations