Archives of Microbiology

, Volume 110, Issue 1, pp 3–12 | Cite as

Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium

  • Norbert Pfennig
  • Hanno Biebl


Anaerobic sea or fresh water media with acetate and elemental sulfur yielded enrichments of a new type of strictly anaerobic, rod-shaped, laterally flagellated, Gram-negative bacterium. Three pure culture-strains from different sulfide-containing sea water sources were characterized in detail and are described as a new genus and species Desulfuromonas acetoxidans.

The new bacterium is unable to ferment organic substances; it obtains energy for growth by anaerobic sulfur respiration. Acetate, ethanol or propanol can serve as carbon and energy source for growth; their oxidation to CO2 is stoichiometrically linked to the reduction of elemental sulfur to sulfide. Organic disulfide compounds, malate or fumarate are the only other electron acceptors used. Butanol and pyruvate are used in the presence of malate only; no other organic compounds are utilized. Biotin is required as a growth factor. The following dry weight yields per mole of substrate are obtained: in the presence of sulfur: 4.21 g on acetate, 9.77 g on ethanol; in the presence of malate: 16.5 g on acetate, 34.2 g on ethanol and 46.2 g on pyruvate. Accumulations of cells are pink; cell suspensions exhibit absorption spectra resembling those of c-type cytochromes (abs. max. at 419, 523 and 553 nm). Malate-ethanol grown cells contain a b-type cytochrome in addition.

In the presence of acetate, ethanol or propanol, Desulfuromonas strains form robust growing syntrophic mixed cultures with phototrophic green sulfur bacteria.

Key words

Desulfuromonas acetoxidans Species description Anaerobic acetate oxidation Sulfur reduction Ethanol Propanol Hydrogen sulfide Cytochromes Growth yield 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abd-el Malek, Y., Rizk, S. G.: Counting of sulfate-reducing bacteria in mixed bacterial populations. Nature (Lond.) 182, 538 (1958)Google Scholar
  2. Barker, H. A.: ATP formation by anaerobic bacteria. In: Horizons of bioenergetics (A. San Pietro, H. Gest, eds.), pp. 7–31. New York: Academic Press 1972Google Scholar
  3. Conn, H. J.: Use of the microscope in studying the activities of bacteria in soil. J. Bact. 17, 399–405 (1929)Google Scholar
  4. van Gemerden, H.: On the ATP-generation by Chromatium in darkness, Arch. Mikrobiol. 64, 118–124 (1968)Google Scholar
  5. Gottschalk, G.: The sterospecifity of the citrate synthase in sulfate-reducing and photosynthetic bacteria. Europ. J. Biochem. 5, 346–351 (1968)Google Scholar
  6. Gray, B. H., Fowler, C. F., Nugent, N. A., Rigopoulos, N., Fuller, R. C.: Reevaluation of Chloropseudomonas ethylica strain 2-K. Int. J. Syst. Bact. 23, 256–264 (1973)Google Scholar
  7. Hansen, T. A., van Gemerden, H.: Sulfide utilization by purple nonsulfur bacteria. Arch. Mikrobiol. 86, 49–56 (1972)Google Scholar
  8. Harder, W., van Dijken, J. P.: Theoretical considerations on the relation between energy production and growth of methaneutilizing bacteria. Symp. on microbial production and utilization of atmospheric trace gases 1975. Göttingen: Goltze 1976Google Scholar
  9. Hatchikian, E. C., Le Gall, J.: Evidence for the presence of a b-type cytochrome in the sulfate-reducing bacterium Desulfovibrio gigas, and its role in the reduction of fumarate by molecular hydrogen. Biochim. biophys. Acta (Amst.) 267, 479–484 (1972)Google Scholar
  10. Holz, G., Bergmeyer, H. U.: Acetatbestimmung mit Acetatkinase und Hydroxylamin. In: Methoden der enzymatischen Analyse (H. U. Bergmeyer, ed.). Weinheim: Verlag Chemie 1974Google Scholar
  11. Jacobs, N. J., Wolin, M. J.: Electron transport system of Vibrio succinogenes. I. Enzymes and cytochromes of the electrontransport system. Biochim. biophys. Acta (Amst.) 69, 18–28 (1963)Google Scholar
  12. Jannasch, H. W.: Zur Methodik der quantitativen Untersuchung von Bakterienkulturen in flüssigen Medien. Arch. Mikrobiol. 18, 425–430 (1953)Google Scholar
  13. Klemme, J.-H., Schlegel, H. G.: Untersuchungen zum Cytochrom-Oxydase-System aus anaerob im Licht und aerob im Dunkeln gewachsenen Zellen von Rhodopseudomonas capsulata. Arch. Mikrobiol. 68, 326–354 (1969)Google Scholar
  14. Larsen, H.: On the microbiology and biochemistry of photosynthetic green sulfur bacteria. Kgl. Norske Videnskab. Selskabs Skrifter, No. 1, 199 pp. (1953)Google Scholar
  15. Lewis, A. J., Miller, J. D. A.: Keto acid metabolism in Desulfovibrio. J. gen. Microbiol. 90, 286–292 (1975)Google Scholar
  16. van Niel, C. B.: On the morphology and physiology of the purple and green sulfur bacteria. Arch. Mikrobiol. 3, 1–112 (1932)Google Scholar
  17. Pfennig, N.: Anreicherungskulturen für rote und grüne Schwefelbakterien. In: Anreicherungskultur und Mutantenauslese (H. G. Schlegel, ed.). Zbl. Bakt., I. Abt. Orig., Suppl. 1, 179–189, 503–504 (1965)Google Scholar
  18. Pfennig, N., Lippert, K.-D.: Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol. 55, 245–256 (1966)Google Scholar
  19. Postgate, J. R.: The reduction of sulphur compounds by Desulphovibrio desulphuricans. J. gen. Microbiol. 5, 725–738 (1951)Google Scholar
  20. Postgate, J. R.: Cytochrome c 3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J. gen. Microbiol. 14, 545–572 (1956)Google Scholar
  21. Roy, A. B., Trudinger, P. A.: The biochemistry of inorganic compounds of sulphur. Cambridge: University Press 1970Google Scholar
  22. Siefert, E.: Die Fixierung von molekularem Stickstoff bei phototrophen Bakterien am Beispiel von Rhodopseudomonas acidophila. Dissertation, Universität Göttingen (1976)Google Scholar
  23. Trüper, H. G., Pfennig, N.: Sulphur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulfate sulphur in Thiocapsa floridana and Chromatium species. Antonie v. Leeuwenhoek 32, 261–276 (1966)Google Scholar
  24. Trüper, H. G., Schlegel, H. G.: Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements of growing cells of Chromatium okenii. Antonie v. Leeuwenhoek 30, 225–238 (1964)Google Scholar
  25. de Vries, W., van Wijk-Kapteyn, W. M. C., Oosterhuis, S. K. H.: The presence and function of cytochromes in Selenomonas ruminantium, Anaerovibrio lipolytica and Veillonella alcalescens. J. gen. Microbiol. 81, 69–78 (1974)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Norbert Pfennig
    • 1
  • Hanno Biebl
    • 1
  1. 1.Institut für Mikrobiologie der Gesellschaft für Strahlen- und Umweltforschung mbH München in GöttingenGöttingenGermany

Personalised recommendations