Letters in Mathematical Physics

, Volume 14, Issue 3, pp 185–191 | Cite as

Exact solutions of the Poincaré gauge theory from its linearized field equations

  • Peter Baekler
  • Metin Gürses


It is shown that a class of linearized solutions of the Poincaré gauge theory also solves the exact field equations of the same theory. Utilizing this property, some new solutions are given.


Statistical Physic Exact Solution Gauge Theory Group Theory Field Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Julia, B., C. R. Acad. Sci. Paris. Ser II 295, 113 (1982).Google Scholar
  2. 2.
    Chinea, F., Phys. Rev. Lett. 52 322 (1984).Google Scholar
  3. 3.
    Gürses, M., Phys. Lett. 101A 388 (1984). Gürses, M., Integrability of the vacuum Einstein field equations, in G. Doebner and T. Palev (eds.), XIII International Conference on Differential Geometrical Methods in Physics, World Scientific, Singapore, 1986; Bilge, A. and Gürses, M., J. Math. Phys. 27, 1819 (1986) and refences cited therein.Google Scholar
  4. 4.
    Harrison, B. K., Integrable systems in general relativity, invited talk presented at the American Mathematical Society, 1984; and Integrable Systems for Einstein's Vaccum Fields, Marcel Grossmann IV, Rome, 1985.Google Scholar
  5. 5.
    Estabrook, F., Covariance and the hierarchy of frame bundles, Preprint 1986 and Frame bundles: covariance, invariant forms and exterior differential systems for Ricci flat solutions, in Proc. XIV. Yamada Conference, Kyoto, 1986.Google Scholar
  6. 6.
    Gürses, M. and Gürsey, F., J. Math. Phys. 16, 2385 (1975).Google Scholar
  7. 7.
    Xanthopoulos, B. C., J. Math. Phys. 19, 1607 (1978).Google Scholar
  8. 8.
    Bilge, A. and Gürses, M., in M., Serdaroglu and E., Inönü (eds.), XI International Colloquium on Group Theoretical Methods in Physics, Istanbul, Turkey 1982, Springer, Berlin, 1982.Google Scholar
  9. 9.
    Hehl, F. W., Found. Phys. 15, 451 (1985).Google Scholar
  10. 10.
    Hehl, F. W., in P. G., Bergmann and V., de, Sabbata (eds.), Proceedings of the 6th Course of the International School of Cosmology and Gravitation on Spin, Torsion and Supergravity Plenum Press, N.Y., 1980.Google Scholar
  11. 11.
    Baekler, P., Hehl, F. W., and Mielke, E. W. in R., Ruffini (ed.), Proceedings of the Second Marcel Grossmann Meeting on General Relativity, North-Holland, Amsterdam, 1982, p. 413.Google Scholar
  12. 12.
    Baekler, P., Mielke, E. W., Phys. Lett. 113A, 471 (1986).Google Scholar
  13. 13.
    Kramer, D. et al., Exact Solutions of Einstein's Field Equations (ed. E., Schmutzer) VEB-Verlag Berlin 1980.Google Scholar
  14. 14.
    Gürses, M., J. Phys. A14, 1957 (1981).Google Scholar
  15. 15.
    Baekler, P., Phys. Lett. 99B, 329 (1981).Google Scholar
  16. 16.
    Benn, I. M., Dereli, T., and Tucker, R. W., Gen. Rel. Grav. 13, 581 (1981).Google Scholar
  17. 17.
    Hearn, A. C., REDUCE, User's Manual, The Rand Corporation, Santa Monica, California, 1985.Google Scholar
  18. 18.
    Schrüfer, E., Hehl, F. W., and McCrea, J. C., Gen. Rel. Grav. 19, 197 (1987).Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Peter Baekler
    • 1
  • Metin Gürses
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of CologneCologne 41West Germany
  2. 2.Tübitak Research Institute for Basic SciencesGebze/KocaeliTurkey

Personalised recommendations