Archives of Microbiology

, Volume 151, Issue 5, pp 381–390 | Cite as

Methanocorpusculaceae fam. nov., represented by Methanocorpusculum parvum, Methanocorpusculum sinense spec. nov. and Methanocorpusculum bavaricum spec. nov.

  • G. Zellner
  • E. Stackebrandt
  • P. Messner
  • B. J. Tindall
  • E. Conway de Macario
  • H. Kneifel
  • U. B. Sleytr
  • J. Winter
Original Papers

Abstract

Two new methanogenic bacteria, Methanocorpusculum sinense spec. nov. strain DSM 4274 from a pilot plant for treatment of distillery wastewater in Chengdu (Province Sichuan, China), and Methanocorpusculum bavaricum spec. nov. strain DSM 4179, from a wastewater pond of the sugar factory in Regensburg (Bavaria, FRG) are described. Methanocorpusculum strains are weakly motile and form irregularly coccoid cells, about 1 μm in diameter. The cell envelope consists of a cytoplasmic membrane and a S-layer, composed of hexagonally arranged glycoprotein subunits with molecular weights of 90000 (Methanocorpusculum parvum), 92000 (M. sinense), and 94000 (M. bavaricum). The center-to-center spacings are 14.3 nm, 15.8 nm and 16.0 nm, respectively. Optimal growth of strains is obtained in the mesophilic temperature range and at a pH around 7. Methane is produced from H2/CO2, formate, 2-propanol/CO2 and 2-butanol/CO2 by M. parvum and M. bavaricum, whereas M. sinense can only utilize H2/CO2 and formate. Growth of M. sinense and M. bavaricum is dependent on the presence of clarified rumen fluid. The G+C content of the DNA of the three strains is ranging from 47.7–53.6 mol% as determined by different methods. A similar, but distinct polar lipid pattern indicates a close relationship between the three Methanocorpusculum species. The polyamine patterns of M. parvum, M. sinense and M. bavaricum are similar, but distinct from those of other methanogens and are characterized by a high concentration of the otherwise rare 1,3-diaminopropane. Quantitative comparison of the antigenic fingerprint of members of Methanocorpusculum revealed no antigenic relationship with any one of the reference methanogens tested. On the basis of the distant phylogenetic position of M. parvum and the data presented in this paper a new family, the Methanocorpusculaceae fam. nov., is defined.

Key words

Archaebacteria Methanocorpusculaceae Methanocorpusculum sinense spec. nov., Methanocorpusculum bavaricum spec. nov. Methanocorpusculum parvum 16 S rRNA Secondary alcohols Lipids Polyamines S-layer Glycoproteins Physiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldrich HC, Robinson RW, Williams DS (1986) Ultrastructure of Methanosarcina mazei. Syst Appl Microbiol 7:314–319Google Scholar
  2. Aranki A, Freter R (1972) Use of anaerobic glove boxes for the cultivation of strictly anacrobic bacteria. Am J Clin Nutr 25:1329–1334PubMedGoogle Scholar
  3. Back W, Stackebrandt E (1978) DNS/DNS-Homologiestudien innerhalb der Gattung Pediococcus. Arch Microbiol 118:79–85CrossRefGoogle Scholar
  4. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedGoogle Scholar
  5. Beveridge TJ, Stewart M, Doyle RJ, Sprott GD (1985) Unusual stability of the Methanospirillum hungatei sheath. J Bacteriol 162:728–737PubMedGoogle Scholar
  6. Beveridge TJ, Harris BJ, Patel GB, Sprott GD (1986b) Cell division and filament splitting in Methanothrix concilii. Can J Microbiol 32:779–786CrossRefGoogle Scholar
  7. Beveridge TJ, Patel GB, Harris BJ, Sprott GD (1986b) The ultrastructure of Methanothrix concilii, a mesophilic aceticlastic methanogen. Can J Microbiol 32:703–710Google Scholar
  8. Corder RE, Hook LA, Larkin JM, Frea JI (1983) Isolation and characterization of two new methane producing cocci: Methanogenium olentangyi, sp. nov., and Methanococcus deltae sp. nov. Arch Microbiol 134:28–32CrossRefGoogle Scholar
  9. Daniels L, Belay N, Rajagopal BS, Weimer PJ (1987) Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science 237:509–511PubMedGoogle Scholar
  10. Darby GK, Jones AS, Kennedy JF, Walker RT (1970) Isolation and analysis of the nucleic acids and polysaccharides from Clostridium welchii. J Bacteriol 103:159–165PubMedGoogle Scholar
  11. Ferguson TJ, Mah RA (1983) Isolation and characterization of an H2-oxidizing thermophilic methanogen. Appl Environ Microbiol 45:265–274PubMedGoogle Scholar
  12. Grant WD, Pinch G, Harris JE, De Rosa M, Gambacorta A (1985) Polar lipids in methanogenic taxonomy. J Gen Microbiol 131:3177–3286Google Scholar
  13. Harris JE, Pinn PA, Davis RP (1984) Isolation and characterization of a novel thermophilic, freshwater methanogen. Appl Environ Microbiol 48:1123–1128PubMedGoogle Scholar
  14. Huber H, Thomm M, König H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic methanogen. Arch Microbiol 132:47–50CrossRefGoogle Scholar
  15. Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen. nov., spec. nov., a new acetotrophic, non hydrogen oxidizing methane bacterium. Arch Microbiol 132:1–9CrossRefGoogle Scholar
  16. Jones JB, Bowers B, Stadtman TC (1977) Methanococcus vannielii: ultrastructure and sensitivity to detergents and antibiotics. J Bacteriol 130:1357–1363PubMedGoogle Scholar
  17. Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261CrossRefGoogle Scholar
  18. Jones WJ, Nagle DP Jr., Whitman WB (1987) Methanogens and the diversity of archaebacteria. Microbiol Rev 5`:135–177Google Scholar
  19. Kandler O, König H (1985) Cell envelopes of archaebacteria. In: Woese CR, Wolfe RS (eds) The Bacteria, vol. VIII. Academic Press, Inc. Orlando San Diego New York London Toronto Montreal Sydney Tokyo, pp 413–457Google Scholar
  20. Kneifel H, Stetter KO, Andressen JR, Wiegel J, König H, Schoberth SM (1986) Distribution of polyamines in representative species of archaebacteria. Syst Appl Microbiol 7:241–245Google Scholar
  21. König H, Stetter KO (1982) Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zbl Bakt Hyg, I Abt Orig C3:478–490Google Scholar
  22. König H, Stetter KO (1986) Studies on archaebacterial S-layers. Syst Appl Microbiol 7:300–309Google Scholar
  23. Macario AJL, Conway de Macario E (1983) Antigenic fingerprinting of methanogenic bacteria with polyclonal antibody probes. Syst Appl Microbiol 4:451–458Google Scholar
  24. Macario AJL, Conway de Macario E (1985) Monoclonal antibodies of predefined molecular specificity for identification and classification of methanogens and for probing their ecologic niches. In: Macario AJL, Conway de Macario E (eds) Monoclonal antibodies against bacteria, vol. II. Academic Press, Inc., Orlando, Florida, pp 213–247Google Scholar
  25. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  26. Marmur J, Doty P (1962) Determination of the base composition of desoxribonucleic acid from its thermal denaturation. J Mol Biol 5:109–118PubMedCrossRefGoogle Scholar
  27. McGill TJ, Jurka J, Sobieski JM, Pickett MH, Woese CR, Fox GE (1986) Characteristic archaebacterial 16 S rRNA oligonucleotides. Syst Appl Microbiol 7:194–197PubMedGoogle Scholar
  28. Messner P, Hollaus F, Sleytr UB (1984) Paracrystalline cell wall surface layers of different Bacillus stearothermophilus strains. Int J Syst Bacteriol 34:202–210Google Scholar
  29. Messner P, Pum D, Sára M, Stetter KO, Sleytr UB (1986) Ultrastructure of the cell envelope of the archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus. J Bacteriol 166:1046–1054PubMedGoogle Scholar
  30. North MJ, Turner R (1976) Diamine content of the cellular slime mould Dictyostelium discoideum: presence of 1,3-diaminopropane and putrescine. Microbiol Lett 4:221–228Google Scholar
  31. Ollivier BM, Mah RA, Garcia JL, Robinson R (1985) Isolation and characterization of Methanogenium aggregans sp. nov. Int J Syst Bacteriol 35:127–130Google Scholar
  32. Ollivier BM, Mah RA, Garcia JL, Boone DR (1986) Isolation and characterization of Methanogenium bourgense sp. nov. Int J Syst Bacteriol 36:297–301Google Scholar
  33. Paynter MJB, Hungate RE (1968) Characterisation of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. J Bacteriol 95:1943–1951PubMedGoogle Scholar
  34. Poulin R, Larochelle J, Nadeau P (1984) Polyamines in Acanthamoeba castellanii: presence of an unusually high, osmotically sensitive pool of 1,3-diaminopropane. Biochem Biophys Res Commun 122:388–392PubMedCrossRefGoogle Scholar
  35. Rivard CJ, Smith PH (1982) Isolation and characterization of a thermophilic marine methanogenic bacterium, Methanogenium thermophilicum sp. nov. Int J Syst Bacteriol 32:430–436CrossRefGoogle Scholar
  36. Rivard CJ, Henson JM, Thomas MV, Smith PH (1983) Isolation and characterization of Methanomicrobium paynteri sp. nov., a mesophilic methanogen isolated from marine sediments. Appl Environ Microbiol 46:484–490PubMedGoogle Scholar
  37. Romesser JA, Wolfe RS, Mayer F, Spiess E, Walther-Mauruschat A (1979) Methanogenium, a genus of marine methanogenic bacteria and characterization of Methanogenium cariaci spec. nov. and Methanogenium marisnigri spec. nov. Arch Microbiol 121:147–153CrossRefGoogle Scholar
  38. Scherer P, Kneifel H (1983) Distribution of polyamines in methanogenic bacteria. J Bacteriol 154:1315–1322PubMedGoogle Scholar
  39. Shaw PJ, Hills GJ, Henwood JA, Harris JE, Archer DB (1985) Three dimensional architecture of the cell sheath and septa of Methanospirillum hungatei. J Bacteriol 161:750–757PubMedGoogle Scholar
  40. Sleytr UB, Messner P (1983) Crystalline surface layers on bacteria. Ann Rev Microbiol 37:311–339CrossRefGoogle Scholar
  41. Sleytr UB, Messner P, Sára M, Pum D (1986) Crystalline envelope layers in archaebacteria. Syst Appl Microbiol 7:310–313Google Scholar
  42. Sleytr UB, Messner P (1988) Crystalline surface layers on bacteria. In: Sleytr UB, Messner P, Pum D, Sára M (eds) Crystalline bacterial cell surface layers. Springer, Berlin Heidelberg New York, pp 160–186Google Scholar
  43. Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978PubMedGoogle Scholar
  44. Stackebrandt E, Ludwig W, Fox GE (1985) 16 S ribosomal RNA oligonucleotide cataloguing. In: Gottschalk G (ed) Methods in Microbiology. Academic Press, London, pp 75–107Google Scholar
  45. Stetter KO, Thomm M, Winter J, Wildgruber G, Huber H, Zillig W, Janekovic D, König H, Palm P, Wunderl S (1981) Methanothermus fervidus sp. nov., a novel extremely thermophilic methanogen isolated from an icelandic hot spring. Zbl Bakt Hyg, I. Abt C2:166–178Google Scholar
  46. Stewart M, Beveridge TJ, Sprott GD (1985) Crystalline order to high resolution in the sheath of Methanospirillum hungatei: A cross-beta structure. J Mol Biol 183:509–515PubMedCrossRefGoogle Scholar
  47. Tanner RS, Wolfe RS (1988) Nutritional requirements of Methanomicrobium mobile. Appl Environ Microbiol 54:625–628PubMedGoogle Scholar
  48. Ulitzur S (1972) Rapid determination of DNA base composition by ultraviolet spectroscopy. Biochim Biophys Acta 272:1–11PubMedGoogle Scholar
  49. Van Brugger JJA, Zwart KB, Hermans JGF, Van Hove EM, Stumm CK, Vogels GD (1986) Isolation and characterization of Methanoplanus endosymbosium sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374CrossRefGoogle Scholar
  50. Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51:1056–1062PubMedGoogle Scholar
  51. Wiegers U, Hilz H (1971) A new method using “Proteinase K” to prevent mRNA degradation during isolation from HeLa cells. Biochem Biophys Res Commun 44:513–519PubMedCrossRefGoogle Scholar
  52. Wildgruber G, Thomm M, König H, Ober K, Ricchiuto T, Stetter KO (1982) Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae. Arch Microbiol 132:31–36CrossRefGoogle Scholar
  53. Winter J (1983) Maintenance of stock cultures of methanogens in the laboratory. Syst Appl Microbiol 4:558–563Google Scholar
  54. Zabel H-P, König H, Winter J (1984) Isolation and characterization of a new coccoid methanogen, Methanogenium tatii spec. nov. from a solfataric field on Mount Tatio. Arch Microbiol 137: 308–315CrossRefGoogle Scholar
  55. Zabel H-P, König H, Winter J (1985) Emended description of Methanogenium thermophilicum, Rivard and Smith, and assignment of new isolates to this species. Syst Appl Microbiol 6:72–78Google Scholar
  56. Zellner G, Winter J (1987a) Secondary alcohols as hydrogen donors for CO2-reduction by methanogens. FEMS Microbiol Lett 44:323–328Google Scholar
  57. Zellner G, Winter J (1987b) Analysis of a highly efficient methanogenic consortium producing biogas from whey. Syst Appl Microbiol 9:284–292Google Scholar
  58. Zellner G, Alten C, Stackebrandt E, Conway de Macario E, Winter J (1987a) Isolation and characterization of Methanocorpusculum parvum, gen. nov., spec. nov., a new tungsten requiring, coccoid methanogen. Arch Microbiol 147:13–20CrossRefGoogle Scholar
  59. Zellner G, Vogel P, Kneifel H, Winter J (1987b) Anaerobic digestion of whey and whey permeate with suspended and immobilized complex and defined consortia. Appl Microbiol Biotechnol 27:306–314CrossRefGoogle Scholar
  60. Zellner G, Bleicher K, Kneifel H, Conway de Macario E, Tindall BJ, Winter J (1989a) Isolation and characterization of a new mesophilic, secondary alcohol-utilizing methanogen, Methanobacterium palustre spec. nov., from a peat bog. Arch Microbiol 151:1–9CrossRefGoogle Scholar
  61. Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, Conway de Macario E, Zabel H-P, Stetter KO, Winter J (1989b) Isolation and characterization of a thermophilic, sulfate-reducing archaebacterium, Archaeoglobus fulgidus strain Z. Syst Appl Microbiol 11:151–160Google Scholar
  62. Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella” Group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • G. Zellner
    • 1
  • E. Stackebrandt
    • 2
  • P. Messner
    • 3
  • B. J. Tindall
    • 4
  • E. Conway de Macario
    • 5
  • H. Kneifel
    • 6
  • U. B. Sleytr
    • 3
  • J. Winter
    • 1
    • 3
    • 4
  1. 1.Institut für MikrobiologieUniversität RegensburgRegensburgGermany
  2. 2.Institut für Allgemeine MikrobiologieChristian-Albrechts-UniversitätKielGermany
  3. 3.Zentrum für UltrastrukturforschungUniversität für BodenkulturViennaAustria
  4. 4.Institut für MikrobiologieRheinische Friedrich-Wilhelms-UniversitätBonnGermany
  5. 5.Wadsworth Center for Laboratories and ResearchNew York State Department of HealthAlbanyUSA
  6. 6.Institut für Biotechnologie, Institut 3Kernforschungsanlage Jülich GmbHJülichGermany
  7. 7.Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHBraunschweigGermany

Personalised recommendations