Advertisement

Archives of Microbiology

, Volume 118, Issue 2, pp 141–152 | Cite as

Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria

  • Otto Kandler
  • Helmut König
Article

Abstract

Cell walls were prepared from freeze-dried samples of 7 strains of Methanobacterium by mechanical disintegration of the cells followed by incubation with trypsin. Electron microscopy revealed the presence of sacculi exhibiting the shape of the original cells, on which no surface structure could be detected. Ultrathin sections of the isolated sacculi showed a homogenously electron dense layer of about 10–15 nm in width. The ash content varied between 8 and 18% of dry weight. The sacculi of all the strains contained Lys: Ala: Glu: GlcNAc or GalNAc in a molar ratio of about 1:1.2:2:1. In one strain (M. ruminantium M 1) alanine is replaced by threonine, however. Neutral sugars and-in some strains-additional amounts of the amino sugars were present in variable amounts, and could be removed by formamide extraction or HF treatment without destroying the sacculi. No muramic acid or d-amino acids typical of peptidoglycan were found. Therefore, the sacculi of the methanobacteria consist of a different polymer containing a set of three l-amino acids and one N-acetylated amino sugar. From cells of Methanospirillum hungatii no sacculi, but tube-like sheaths could be isolated, which tend to fracture perpendicularly to the long axis of the sheath along the fibrills seen on the surface. The sheaths consist of protein containing 18 amino acids and small amounts of neutral sugars. They are resistent to the proteinases tested and are not disintegrated by boiling in 2% sodium dodecylsulfate for 30 min.

The three Gram-negative strains Black Sea isolate JR-1, Cariaco isolate JR-1 and Methanobacterium mobile do not contain a rigid sacculus, but merely a SDS-sensitive surface layer composed of regularly arranged protein subunits. This evidence indicates that, within the methanogens, different cell wall polymers characteristic of particular groups of organisms may have evolved during evolution, and supports the hypothesis that the evolution of the methanogens was separated from that of the peptidoglycan-containing procaryotic organisms at a very early stage.

Key words

Methanobacterium formicicum Methanobacterium thermoautotrophicum Methanobacterium ruminantium Methanobacterium arbophilicum Methanobacterium sp. M. o. H. Methanobacterium mobile Methanococcus Methanospirillum hungatii Cell wall polymer Cell wall composition 

Non Standard Abbreviations

SDS

sodium dodecylsulfate

EDTA

ethylenediaminetetra acetic acid

DNP

dinitrophenyl

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albersheim, P., Nevins, D. J., English, P. D., Karr, A.: A method for the analysis of sugars in plant cell-wall polysaccharides by gas liquid chromatography. Carboh. Res. 5, 340–345 (1967)Google Scholar
  2. Baddiley, J., Davison, A. L.: The occurence and location of teichoic acid in lactobacilli. J. Gen. Microbiol. 24, 295–299 (1961)Google Scholar
  3. Bailey, J. L.: Techniques in protein chemistry. Amsterdam-London-New York, Elsevier 1962Google Scholar
  4. Balch, W. E., Magrum, L. J., Fox, G. E., Wolfe, R. S., Woese, C. R.: An ancient divergence among the bacteria. J. Mol. Evol. 9, 305–311 (1977)Google Scholar
  5. Bergmeyer, H. U.: Methoden der enzymatischen Analyse. Weinheim: Verlag Chemie 1974Google Scholar
  6. Blumenkrantz, N., Asboe-Hansen, G.: New method for quantitative determination of uronic acids. Analyt. Biochem. 54, 484–489 (1973)Google Scholar
  7. Bryant, M. P., McBride, B. C., Wolfe, R. S.: Hydrogen-oxidizing methane bacteria. I. Cultivation and methanogenesis. J. Bacteriol. 95, 1118–1123 (1968)Google Scholar
  8. Chen, P. S., Toribara, T. Y., Warner, H.: Microdetermination of phosphorus. Analyt. Chem. 28, 1756–1758 (1956)Google Scholar
  9. Dodgston, K. S., Price, R. G.: A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem. J. 84, 106–110 (1962)Google Scholar
  10. Fox, G. F., Magrum, L. J., Balch, W. E., Wolfe, R. S., Woese, C. R.: Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc. Natl. Acad. Sci. U.S.A. 74, 4537–4541 (1977)Google Scholar
  11. Ghuysen, J. M., Tipper, D. I., Strominger, J. L.: Enzymes that degrade bacterial cell walls. In: Methods in enzymology, Vol. VIII (S. P. Colowick, N. O. Kaplan, eds.), pp. 685–699. LOndon-New York: Academic Press 1966Google Scholar
  12. Hestrin, S.: The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine and its analytical application. J. Biol. Chem. 180, 249–261 (1949)Google Scholar
  13. Jones, J. B., Bowers, B., Stadtman, T. C.: Methanococcus vannielii: ultrastructure and sensitivity to detergents and antibiotics. J. Bacteriol. 130, 1357–1363 (1977)Google Scholar
  14. Kandler, O., Hippe, H.: Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch. Microbiol. 113, 57–60 (1977)Google Scholar
  15. Kandler, O., König, H.: Chemie der peptidoglycanfreien Zellwände der Methanbakterien. Hoppe-Seyler's Z. Physiol. Chem. 359, 282–283 (1978)Google Scholar
  16. Kato, K., Strominger, J. L.: Structure of the cell wall of Staphylococcus aureus. IX. Mechanism of hydrolysis of the L11 enzyme. Biochem. 7, 2754–2761 (1968)Google Scholar
  17. Larson, D. M., Setsinger, D. C., Waibel, P. E.: Procedure for determination of d-amino acids. Anal. Biochem. 39, 395–401 (1971)Google Scholar
  18. Merck: “Biochemical” Enzyme. Darmstadt: Merck 1974Google Scholar
  19. Mort, A. J., Lamport, D. T. A.: Anhydrous hydrogen fluoride deglycosylates glycoproteins. Analyt. Biochem. 82, 289–309 (1977)Google Scholar
  20. Rao, K. R., Sober, H. A.: Preparation and properties of 2,4-dinitrophenyl-l-amino acids. J. Am. Chem. Soc. 76, 1328–1331 (1954)Google Scholar
  21. Romesser, J. A., Mayer, F., Spiess, E., Wolfe, R. S.: Methanococcus malmarii, sp. n., and Methanococcus cariacii, sp. n. Isolation and characterization of two marine methanogens. Int. J. Syst. Bacteriol. (in press, 1978)Google Scholar
  22. Ryter, A., Kellenberger, E., Birch-Andersen, A., Maaløe, O.: Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucléique. I. Les nucléoides des bactéries en croissance active. Z. Naturforsch. 13b, 597–605 (1958)Google Scholar
  23. Schleifer, K. H., Kandler, O.: Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477 (1972)Google Scholar
  24. Schleifer, K. H., Plapp, R., Kandler, O.: Die Aminosäuresequenz des Mureins von Microbacterium lacticum. Biochim. Biophys. Acta 154, 573–582 (1958)Google Scholar
  25. Sentandreu, R., Northcote, D. H.: The structure of a glycopeptide isolated from the yeast cell wall. Biochem. J. 109, 419–432 (1968)Google Scholar
  26. Spurr, A. R.: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)Google Scholar
  27. Steber, J., Schleifer, K. H.: Halococcus morrhuae: A sulfated heteropolysaccharide as the structural component of the bacterial cell wall. Arch. Microbiol. 105, 173–177 (1975)Google Scholar
  28. Takebe, I.: Extent of crosslinkage in the murein sacculus of Escherichia coli B cell wall. Biochim. Biophys. Acta 101, 124–126 (1965)Google Scholar
  29. Taylor, C. D., Wolfe, R. S.: A simplified assay for coenzyme M. J. Biol. Chem. 249, 4886–4890 (1974)Google Scholar
  30. Trevelyan, W. E., Procter, D. D., Harrison, J. S.: Detection of sugars on paper chromatograms. Nature 166, 444–445 (1950)Google Scholar
  31. Westphal, O., Jann, K.: Bacterial Lipopolysaccharides. In: Methods in carbohydrate chemistry, Vol. V (R. L. Whistler, J. N. BeMiller, M. L. Wolfrom, eds.), pp. 83–91. New York-London: Academic Press 1965Google Scholar
  32. Witzerbin-Falszpan, J., Das, B. C., Petit, J.-F., Lederer, E.: The amino acids of the cell wall of Myobacterium tuberculosis var. bovis, strain BCG. Eur. J. Biochem. 32, 525–532 (1973)Google Scholar
  33. Zeikus, J. G.: The biology of methanogenic bacteria. Bacteriol. Rev. 41, 514–541 (1977)Google Scholar
  34. Zeikus, J. G., Bowen, V. G.: Comparative ultrastructure of methanogenic bacteria. Can. J. Microbiol. 21, 121–129 (1975)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Otto Kandler
    • 1
  • Helmut König
    • 1
  1. 1.Botanisches Institut der Universität MünchenMünchen 19Federal Republic of Germany

Personalised recommendations