Archives of Microbiology

, Volume 136, Issue 1, pp 11–16 | Cite as

Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll

  • Howard Gest
  • Jeffrey L. Favinger
Original Papers

Abstract

Heliobacterium chlorum is a brownish-green anoxygenic photosynthetic bacterium, isolated from surface soil. It fixes N2 readily, and contains a hitherto unknown form of bacteriochlorophyll (Bchl). The latter, designated as BchlgGg, shows a major absorbancy peak in vivo at 788 nm. As yet, the subcellular localization of the photosynthetic pigment is uncertain; neither chlorosomes nor extensively developed intracytoplasmic membranes of the kind produced by most photosynthetic bacteria are observed in electron micrographs of thin sections. H. chlorum grows rapidly as a mesophilic photoheterotroph, requires biotin as an essential growth factor, and appears to move by gliding motility. The bacterium is unable to grow aerobically in darkness, and photosynthetic growth is severely inhibited by molecular oxygen. The extreme O2-sensitivity of H. chlorum may be related to its low content of (neurosporene-like) carotenoid.

Key words

Heliobacterium chlorum Bacterial photosynthesis Bacteriochlorophyll g-N2 fixation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brockmann H Jr, Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136:17–19Google Scholar
  2. deBoer W (1969) On ultrastructures in Rhodopseudomonas gelatinosa and Rhodospirillum tenue. A v Leeuwenhoek J Microbiol Serol 35:241–242Google Scholar
  3. Gest H, Dits MW, Favinger JL (1983) Characteristics of Rhodopseudomonas sphaeroides strain “cordata/81-1.” FEMS Microbiol Lett 17:321–325Google Scholar
  4. Madigan M, Gest H (1982) Nitrogen fixation by photosynthetic bacteria. In: A Mitsui, CC Black (eds) Handbook of biosolar resources, vol 1, part 1. CRC Press, Boca Raton, Florida, pp 245–250Google Scholar
  5. Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24Google Scholar
  6. Ryter A, Kellenberger E, Birch-Andersen A, Maaløe O (1958) Etude au microscope electronique de plasma contenant de l'acide desoxyribonucleique. I. Les nucleoides des bacteries en croissance active. Z Naturforsch 13b:597–605Google Scholar
  7. Scolnik PA, Walker MA, Marrs BL (1980) Biosynthesis of carotenoids derived from neurosporene in Rhodopseudomonas capsulata. J Biol Chem 255:2427–2432Google Scholar
  8. Sojka GA, Freeze HH, Gest H (1970) Quantitative estimation and bacteriochlorophyll in situ. Arch Biochem Biophys 136:578–580Google Scholar
  9. Tauschel H-D, Drews G (1969) Der Geißelapparat von Rhodopseudomonas palustris I. Untersuchungen zur Feinstruktur des Polorganells. Arch Mikrobiol 66:166–179Google Scholar
  10. Trüper HG, Pfennig N (1978) Taxonomy of the Rhodospirillales. In: RK Clayton, WR Sistrom (eds) The photosynthetic bacteria. Plenum Press, New York London, pp 19–27Google Scholar
  11. Weckesser J, Drews G, Tauschel H-D (1969) Zur Feinstruktur und Taxonomie von Rhodopseudomonas gelatinosa. Arch Mikrobiol 65:346–358Google Scholar
  12. Zehnder AJB, Wuhrmann K (1976) Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:1165–1166Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Howard Gest
    • 1
  • Jeffrey L. Favinger
    • 1
  1. 1.Photosynthetic Bacteria Group, Department of BiologyIndiana UniveristyBloomingtonUSA

Personalised recommendations