Antonie van Leeuwenhoek

, Volume 53, Issue 6, pp 479–484 | Cite as

Neisseria gonorrhoeae IgA protease. Secretion and implications for pathogenesis

  • J. Pohlner
  • R. Halter
  • T. F. Meyer
Section 3: Outer Membrane Proteins and IgA Protease


A cloned 5 bk DNA fragment from Neisseria gonorrhoeae strain MS11 promotes expression and excretion of IgA protease in E. coli and other Gram-negative hosts. DNA sequencing reveals a large open reading frame coding for a prcursor molecule of 169 kd. The 106 kd mature IgA protease is released from the bacteria in conjunction with a 15 kd soluble precursor segment, the α-protein. In contrast, the carboxy terminal portion of the precursor, the β-protein (45 kd), remains associated with the outer bacterial membrane. The three proteins result form autoproteolytic cleavage at sites in the precursor which are similar to the target site in IgA1. Consensus sequences of the specific cleavage sites are found in a number of relevant human proteins. IgA protease may therefore have other natural substrates besides IgA1. The soluble α-protein as well as the membrane bound β-protein, both associated with IgA protease, may confer additional virulence functions to the gonococcus.


Cleavage Site Carboxy Natural Substrate Neisseria Gonorrhoeae Bacterial Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bricker, J., M. H. Mulks, A. G. Plaut, E. R. Moxon & A. Wright (1983) IgA proteases of Haemophilus influenzae: Cloning and characterization in Escherichia coli K-12. Proc. natl. Acad. Sci. USA 80: 2681–2685Google Scholar
  2. Fishman, Y., J. Bricker, J. V. Gilbert, A. G. Plaut & A. Wright (1985) Cloning of the type 1 immunoglobulin A1 protease from Neisseria gonorrhoeae and secretion of the enzyme from Escherichia coli. In: G. K. Schoolnik (Ed) The Pathogenic Neisseriae (pp. 164–168). American Society for Microbiology, Washington, D.C.Google Scholar
  3. Halter, R., J. Pohlner & T. F. Meyer (1984) IgA protease of Neisseria, gonorrhoeae: isolation and characterization of the gene and its extracellular product. EMBO 3: 1595–1601.Google Scholar
  4. Kalderon, D., B. L. Roberts, W. D. Richardson & A. E. Smith (1984) A short amino acid sequence able to specify nuclear location. Cell 39: 499–509Google Scholar
  5. Kilian, M., J. Mestecky & R. E. Schrohenloher (1979) Pathogenic species of the genus Haemophilus and Streptococcus pneumoniae produce immunoglobulin A1 protease. Infect. Immun. 26: 143–149Google Scholar
  6. Koomey, J. M., R. E. Gill & S. Falkow (1982) Genetic and biochemical analysis of gonococcal IgA1 protease: Cloning in Escherichia coli and construction of mutants of gonococci that fail to produce the activity. Proc. natl. Acad. Sci. U.S.A. 79: 7881–7885Google Scholar
  7. Lanford, R. E., P. Kanda & R. C. Kennedy (1986) Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46: 575–582Google Scholar
  8. Mulks, M. H. & A. G. Plaut (1978) IgA protease production as a characteristic distinguishing pathogenic from harmless Neisseriaceae. N. Engl. J. Med. 299: 973–976.Google Scholar
  9. Plaut, A. G., J. V. Gilbert, M. S. Artenstein & J. D. Capra (1975) Neisseria gonorrhoeae and Neisseria meningitidis: Extracellular enzyme cleaves human immunoglobulin A. Science 190: 1103–1105Google Scholar
  10. Pohlner, J., R. Halter, K. Beyreuther & T. F. Meyer (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA1 protease. Nature (in press)Google Scholar
  11. Rahr, S., R. Halter, H. Müller, J. Pohlner & T. F. Meyer (1985) Genetic analysis of neisserial immunoglobulin proteases.-In: G. K. Schoolnik (Ed) The Pathogenic Neisseriae (pp. 157–163). American Society for Microbiology, Washington, D. C.Google Scholar
  12. Strebel, K., E. Beck, K. Strohmaier, & H. Schaller (1986) Characterization of foot-and-mouth disease virus gene products with antisera against bacterially synthesized fusion proteins. Virology 57: 983–991Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1987

Authors and Affiliations

  • J. Pohlner
    • 1
  • R. Halter
    • 1
  • T. F. Meyer
    • 1
  1. 1.Max-Planck-Institut für BiologieTübingenFRG

Personalised recommendations