Archives of Microbiology

, Volume 133, Issue 3, pp 209–216

Propionigenium modestum gen. nov. sp. nov. a new strictly anaerobic, nonsporing bacterium growing on succinate

  • Bernhard Schink
  • Norbert Pfennig
Original Papers

Abstract

From marine and freshwater mud samples and from human saliva new strictly anaerobic, Gram-negative, nonsporeforming bacteria were isolated growing with succinate as sole source of carbon and energy. All strains grew in defined mineral media containing at least 1% sodium chloride. Succinate was stoichiometrically transformed to propionate und carbon dioxide; the growth yield varied between 2.1 and 2.4 g cell dry weight per mol of succinate fermented. In addition to succinate, only fumarate, l-aspartate, l-malate, oxaloacetate and pyruvate, were utilized and were stoichiometrically fermented to propionate and acetate. Yeast extract was not fermented but enhanced growth rates and yields. Neither sulfate, sulfur, nor nitrate were reduced. The DNA base ratio was 33.9±0.3 mol % guanine plus cytosine. A marine isolate, strain Gra Succ 2, is described as type strain of a new species, Propionigenium modestum gen. nov. sp. nov., in the family Bacteroidaceae.

Key words

Propionigenium modestum gen. nov. sp. nov. genus and species description Succinate degradation Anaerobic fermentations Energy metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association Inc., Ed (1969) Standard methods for the examination of water and wastewater including bottom sediments and sludge. New York, pp 604–609Google Scholar
  2. Biebl H, Pfennig N (1981) Isolation of members of the family Rhodospirillaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, a handbook on habitats, isolation, and identification of bacteria. Springer, Berlin Heidelberg New York, pp 267–273Google Scholar
  3. Blackburn TH, Hungate RE (1963) Succinic acid turnover and propionate production in the bovine rumen. Appl Microbiol 11:132–135Google Scholar
  4. Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen.nov., from methanogenic ecosystems. Appl environ Microbiol 40:626–632Google Scholar
  5. Buchanan RE, Gibbons NE (1974) Bergey's manual of determinative bacteriology, 8th ed. Williams and Wilkins Co, BaltimoreGoogle Scholar
  6. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458Google Scholar
  7. Dawson KA, Allison MJ, Hartman PA (1980) Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl Environ Microbiol 40:833–839Google Scholar
  8. DeLey J (1970) Reexamination of the association between melting point, buoyant density and the chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754Google Scholar
  9. De Vries W, Rietveld-Struyck TRM, Stouthamer AH (1977) ATP formation associated with fumarate and nitrate reduction in growing cultures of Veillonella alcalescens. Antonic van Leeuwenhoek, J Microbiol Serol 43:153–167Google Scholar
  10. Dimroth P (1980) A new sodium-transport system energized by the decarboxylation of oxaloacetate. FEBS Lett 122:234–236Google Scholar
  11. Dimroth P (1981) Characterization of a membrane-bound biotincontaining enzyme: Oxaloacetate decarboxylase from Klebsiella aerogenes. Eur J Biochem 115:353–358Google Scholar
  12. Evans WC (1977) Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature (London) 270:17–22Google Scholar
  13. Gottschalk G, Andreesen JR (1979) Energy metabolism in anaerobes. In: Quayle JR (ed) International review of biochemistry. Microbial biochemistry, vol 21. University Park Press, Baltimore, pp 85–115Google Scholar
  14. Hartree EF (1972) Detemination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427Google Scholar
  15. Hilpert W, Dimroth P (1982) Conversion of the chemical energy of methylmalonyl-CoA decarboxylation into a Na+ gradient. Nature 296:584–585Google Scholar
  16. Konings WN, Veldkamp H (1980). Phenotype responses to environmental change. In: Ellwood DC, Hedger JN, Latham MJ, Lynch JM, Slater JH (eds) Contemporary microbial ecology. Academic Press, London, pp 161–191Google Scholar
  17. Lee SY, Mabee MS, Jangaard NO (1978) Pectinatus, a new genus of the family Bacteroidaceae. Int J Syst Bacteriol 28:582–594Google Scholar
  18. Macy J, Probst I, Gottschalk G (1975) Evidence for cytochrome involvement in fumarate reduction and adenosine 5′-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin. J Bacteriol 123:436–442Google Scholar
  19. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF (1975) A more reliable Gram staining technic for diagnosis of surgical infections. American J Surgery 130:341–346Google Scholar
  20. Mah RA, Smith MR, Baresi L (1978) Studies on an acetate-fermenting strain of Methanosarcina. Appl Environ Microbiol 35:1174–1185Google Scholar
  21. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218Google Scholar
  22. Mays TD, Holdeman LV, Moore WEC, Rogosa M, Johnson JL (1982) Taxonomy of the genus Veillonella Prévot. Int J Syst Bacteriol 32:28–36Google Scholar
  23. Pfennig N (1978) Rhodocyclus purpureus gen. nov. and sp. nov., a ringshaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J syst Bacteriol 28:283–288Google Scholar
  24. Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12Google Scholar
  25. Rogosa M (1964) The genus Veillonella. I. General cultural, ecological, and biochemical considerations. J Bacteriol 87:162–170Google Scholar
  26. Rogosa M (1974) Gram-negative anaerobic cocci. In: Buchanan RE, Gibbons NE (eds) Bergey's manual of determinative bacteriology, 8th ed. Williams and Wilkins. Baltimore, pp 445–449Google Scholar
  27. Scheifinger CC, Wolin MJ (1973) Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl Microbiol 26:789–795Google Scholar
  28. Schink B, Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov.sp.nov., a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133:195–201Google Scholar
  29. Schink B, Thompson TE, Zeikus JG (1982) Characterization of Propionispira arboris gen. nov.sp.nov., a nitrogen-fixing anaerobe common to wetwoods of living trees. J Gen Microbiol (in press)Google Scholar
  30. Stouthamer AH (1980) Electron transport linked phosphorylation in anaerobes. In: Gottschalk G, Pfennig N, Werner H (eds) Anaerobes and anaerobic infections. Fischer, Stuttgart New York, pp 17–29Google Scholar
  31. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180Google Scholar
  32. Weimer PJ, Zeikus JG (1978) Acetate metabolism in Methanosarcina barkeri. Arch Microbiol 119:175–182Google Scholar
  33. Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Diss Univ GöttingenGoogle Scholar
  34. Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfatereducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen.nov.sp.nov. Arch Microbiol 129:395–400Google Scholar
  35. Widdel F, Pfennig N (1982) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen.nov.sp.nov. Arch Microbiol 131:360–365Google Scholar
  36. Yousten AA, Delwiche EA (1961) Biotin and vitamin B12 coenzymes in succinate decarboxylation by Propionibacterium pentosaceum and Veillonella alcalescens. Bacteriol Proc 61:175Google Scholar
  37. Zebe E (1975) In vivo-Untersuchungen über den Glucose-Abbau bei Arenicola marina (Annelida, Polychaeta). J Comp Physiol 101:133–145Google Scholar
  38. Zehnder AJB, Brock TD (1979) Biological energy production in the apparent absence of electron transport and substrate level phosphorylation. FEBS Lett 107:1–3Google Scholar
  39. Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating, non-hydrogenoxidizing methane bacterium. Arch Microbiol 124:1–11Google Scholar
  40. Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41:511–541Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Bernhard Schink
    • 1
  • Norbert Pfennig
    • 1
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzFederal Republic of Germany

Personalised recommendations