Archives of Microbiology

, Volume 148, Issue 3, pp 178–186 | Cite as

Isolation of mutants of Alcaligenes eutrophus unable to derepress the fermentative alcohol dehydrogenase

  • A. Steinbüchel
  • C. Fründ
  • D. Jendrossek
  • H. G. Schlegel
Original Papers


Eight representative strains of Alcaligenes eutrophus, two strains of Alcaligenes hydrogenophilus and three strains of Paracoccus denitrificans were examined for their ability to use different alcohols and acetoin as a carbon source for growth. A. eutrophus strains N9A, H16 and derivative strains were unable to grow on ethanol or on 2,3-butanediol. Alcohol-utilizing mutants derived from these strains, isolated in this study, can be categorized into two major groups: Type I-mutants represented by strain AS1 occurred even spontaneously and were able to grow on 2,3-butanediol (td=2.7–6.4 h) and on ethanol (td=15–50 h). The fermentative alcohol dehydrogenase was present on all substrates tested, indicating that this enzyme in vivo is able to oxidize 2,3-butanediol to acetoin which is a good substrate for wild type strains. Type II-mutants represented by strain AS4 utilize ethanol as a carbon source for growth (td=3–9 h) but do not grow on butanediol. In these mutants the fermentative alcohol dehydrogenase is only present in cells cultivated under conditions of restricted oxygen supply, but a different NAD-dependent alcohol dehydrogenase is present in ethanol grown cells. Cells grown on ethanol, acetoin or 2,3-butanediol synthesized in addition two proteins exhibiting NAD-dependent acetaldehyde dehydrogenase activity and acetate thiokinase. An acylating acetaldehyde dehydrogenase (EC was not detectable. Applying the colistin- and pin point-technique for mutant selection to strain AS1, mutants, which lack the fermentative alcohol dehydrogenase even if cultivated under conditions of restricted oxygen supply, were isolated; the growth pattern served as a readily identifiable phenotypic marker for the presence or absence of this enzyme.

Key words

Alcaligenes eutrophus Butanediol cycle Acetaldehyde dehydrogenase Acetate thiokinase Butanediol dehydrogenase Acetoin metabolism Alcohol dehydrogenase Constitutive mutants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beisenherz G, Bolze HJ, Bücher T, Czok R, Garbade KH, Meyer-Arendt E (1953) Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskel in einem Arbeitsgang. Z Naturforsch 8b:555–577Google Scholar
  2. Beudeker RF, De Boer W, Kuenen JG (1981) Heterolactic fermentation of intracellular polyglucose by the obligate chemolithotroph Thiobacillus neapolitanus under anaerobic conditions. FEMS Microbiol Lett 12:337–342Google Scholar
  3. Bowien B, Schlegel HG (1981) Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Ann Rev Microbiol 35:405–452Google Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254Google Scholar
  5. Brown TDK, Jones-Mortimer MC, Kornberg HL (1977) The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J Gen Microbiol 102:327–336Google Scholar
  6. Clark D, Cronan JE (1980) Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J Bacteriol 141:177–181Google Scholar
  7. Davis DH, Stanier RY, Doudoroff M (1970) Taxonomic studies on some Gram negative polarly flagellated “hydrogen bacteria” and related species. Arch Mikrobiol 70:1–13Google Scholar
  8. Don RH, Pemperton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686Google Scholar
  9. Friedrich B, Friedrich CG, Meyer M, Schlegel HG (1984) Expression of hydrogenase in Alcaligenes spp. is altered by interspecific plasmid exchange. J Bacteriol 158:331–339Google Scholar
  10. Friedrich B, Kortlüke C, Hogrefe C, Eberz G, Silber B, Warrelmann J (1986) Genetics of hydrogenase from aerobic lithoautotrophic bacteria. Biochimie 68:133–145Google Scholar
  11. Hogrefe C, Friedrich B (1984) Isolation and characterization of megaplasmid DNA from lithoautotrophic bacteria. Plasmid 12:161–169Google Scholar
  12. Jendrossek D, Steinbüchel A, Schlegel HG (1987) Purification and properties of two different acetaldehyde dehydrogenases from Alcaligenes eutrophus involved in the utilization of ethanol. Eur J Biochem (in press)Google Scholar
  13. Juni E, Heym GA (1956) A cyclic pathway for the bacterial disimilation of 2,3-butanediol, acetylmethylcarbinol and diacetyl. I. General aspects of the 2,3-butanediol cycle. J Bacteriol 71:425–432Google Scholar
  14. Kaudewitz F (1959) Inaktivierende und mutagene Wirkung salpetriger Säure auf Zellen von Escherichia coli. Z Naturforsch 14b:528–537Google Scholar
  15. King PP (1982) Biotechnology. An industrial view. J Chem Tech Biotechnol 32:2–8Google Scholar
  16. Kuhn M, Steinbüchel A, Schlegel HG (1984) Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions. J Bacteriol 159:633–639Google Scholar
  17. Lopez J, Thoms B, Fortnagel P (1973) Mutants of Bacillus subtilis blocked in acetoin reductase. Eur J Biochem 40:479–483Google Scholar
  18. Lopez JM, Thoms B, Rehbein H (1975) Acetoin degradation in Bacillus subtilis by direct oxidative cleavage. Eur J Biochem 57:425–430Google Scholar
  19. Lorowitz W, Clark D (1982) Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase. J Bacteriol 152: 935–938Google Scholar
  20. Loveless A, Howarth S (1959) Mutation of bacteria at high levels of survival by ethyl methane sulfonate. Nature 184:1780–1782Google Scholar
  21. Mandell JD, Greenberg J (1960) A new chemical mutagen for bacteria: 1-methyl-3-nitro-1-nitrosoguanidine. Biochem Biophys Res Commun 3:575–577Google Scholar
  22. Mergeay M, Houba C, Gerits J (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt, and zinc ions: evidence for curing in a Pseudomonas. Arch Int Physiol Biochim 86:440–441Google Scholar
  23. Oberlies G, Fuchs G, Thauer RK (1980) Acetate thiokinase and the assimilation of acetate in Methanobacterium thermoautotrophicum. Arch Microbiol 128:248–252Google Scholar
  24. Ohi K, Takada N, Komemushi S, Okazaki M, Miura Y (1979) A new species of hydrogen-utilizing bacterium. J Gen Appl Microbiol 25:53–58Google Scholar
  25. Reh M, Schlegel HG (1969) Anreicherung und Isolierung auxotropher Mutanten von Hydrogenomonas H16. Arch Mikrobiol 67:99–109Google Scholar
  26. Schelgel HG, Vollbrecht D (1980) Formation of the dehydrogenases for lactate, ethanol and butanediol in the strict aerobic bacterium Alcaligenes eutrophus. J Gen Microbiol 117:475–481Google Scholar
  27. Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bacterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222Google Scholar
  28. Senior PJ, Dawes EA (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 134:225–238Google Scholar
  29. Stegemann H, Francksen H, Macko V (1973) Potato proteins: genetic and physiological changes, evaluated by one or two dimensional PAA-gel-techniques. Z Naturforsch 28c:722–732Google Scholar
  30. Steinbüchel A, Schlegel HG (1983a) NAD-linked l(+)-lactate dehydrogenase from the strict aerobe Alcaligenes eutrophus. 1. Purification and properties. Eur J Biochem 130:321–328Google Scholar
  31. Steinbüchel A, Schlegel HG (1983b) NAD-linked l(+)-lactate dehydrogenase from the strict aerobe Alcaligenes eutrophus. 2. Kinetic properties and inhibition by oxaloacetate. Eur J Biochem 130:329–334Google Scholar
  32. Steinbüchel A, Schlegel HG (1983c) The rapid purification of lactate dehydrogenase from Alcaligenes eutrophus in a two-step procedure. Eur J Appl Microbiol Biotechnol 17:163–167Google Scholar
  33. Steinbüchel A, Schlegel HG (1984) A multifunctional fermentative alcohol dehydrogenase from the strict aerobe Alcaligenes eutrophus: purification and properties. Eur J Biochem 141: 555–564Google Scholar
  34. Steinbüchel A, Kuhn M, Niedrig M, Schlegel HG (1983) Fermentation enzymes in strictly aerobic bacteria: comparative studies on strains of the genus Alcaligenes and on Nocardia opaca and Xanthobacter autotrophicus. J Gen Microbiol 129:2825–2835Google Scholar
  35. Trüper HG (1965) Tricarboxylic acid cycle and related enzymes in Hydrogenomonas H16G+ grown on various carbon sources. Biochim Biophys Acta 111:565–568Google Scholar
  36. Weber K, Osborn M (1969) The reliability of molecular weight determination by dodecyl sulfate polyacrylamide electrophoresis. J Biol Chem 244:4406–4412Google Scholar
  37. Wilde E (1962) Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas. Arch Microbiol 43:109–137Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • A. Steinbüchel
    • 1
  • C. Fründ
    • 1
  • D. Jendrossek
    • 1
  • H. G. Schlegel
    • 1
  1. 1.Institut für Mikrobiologie der Universität GöttingenGöttingenFederal Republic of Germany

Personalised recommendations