Advertisement

Archives of Microbiology

, Volume 127, Issue 1, pp 59–65 | Cite as

Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum

  • Peter Schönheit
  • Johanna Moll
  • Rudolf K. Thauer
Article

Abstract

Methanobacterium thermoautotrophicum was grown on a mineral salts medium in a fermenter gassed with H2 and CO2, which were the sole carbon and energy sources. Under the conditions used the bacterium grew exponentially. The dependence of the growth rate (μ) on the concentration of H2 and CO2 in the incoming gas and the dependence of the growth yield (\(Y_{CH_4 }\)) on the growth rate were determined at pH 7 (the pH optimum) and 65° C (the temperature optimum).

The curves relating growth rate to the H2 and CO2 concentration were hyperbolic. From reciprocal plots apparent Ks values for H2 and CO2 and μmax were obtained: app. \(K_{{\text{H}}_{\text{2}} }\) = 20%; app. \(K_{{\text{CO}}_{\text{2}} }\) = 11%; μ = 0.69 h-1; tδ (max)=1 h.

\(Y_{CH_4 }\) was 1.6 g mol-1 and almost independent of the growth rate, when the rate of methane formation was not limited by the supply of either H2 or CO2. The yield increased to near 3 g mol-1 when H2 or CO2 were limiting. These findings indicate that methane formation and growth are less tightly coupled at high concentrations of H2 or CO2 in the medium than at low concentrations. The physiological significance of these findings is discussed.

Key words

Methanobacterium thermoautotrophicum Growth rates Growth yields Nickel Maintenance coefficient Interspecies hydrogen transfer Saturation constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., Wolfe, R.: Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 43, 260–296 (1979)Google Scholar
  2. Balch, W. E., Wolfe, R. S.: New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ Microbiol. 32, 781–791 (1976)Google Scholar
  3. Coultate, T. P., Sundaram, T. K.: Energetics of Bacillus stearothermophilus growth: Molar growth yield and temperature effects on growth efficiency. J. Bacteriol. 121, 55–64 (1975)Google Scholar
  4. Diekert, G. B., Graf, E. G., Thauer, R. K.: Nickel requirement for carbon monoxide dehydrogenase formation in Clostridum pasteurianum. Arch. Microbiol. 122, 117–120 (1979)Google Scholar
  5. Diekert, G., Klee, B., Thauer, R. K.: Nickel, a component of factor F430 from Methanobacterium thermoautotrophicum. Arch. Microbiol. 124, 103–106 (1980)Google Scholar
  6. Downs, A. J., Jones, C. W.: Energy conservation in Bacillus megaterium. Arch. Microbiol. 105, 159–167 (1975)Google Scholar
  7. Fuchs, G., Moll, J., Scherer, P., Thauer, R.: Activity, acceptor specificity and function of hydrogenase in Methanobacterium thermoautotrophicum. In: Hydrogenases: Their catalytic activity, structure and function (H. G. Schlegel, ed.), pp. 83–92. Göttingen: Goltze 1979Google Scholar
  8. Fuchs, G., Stupperich, E.: Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum. Arch. Microbiol. 118, 121–125 (1978)Google Scholar
  9. Fuchs, G., Stupperich, E., Thauer, R. K.: Acetate assimilation and the synthesis of alanine, aspartate, and glutamate in Methanobacterium thermoautotrophicum. Arch. Microbiol. 117, 61–66 (1978)Google Scholar
  10. Fuchs, G., Thauer, R. K., Ziegler, H., Stichler, W.: Carbon isotope fractionation by Methanobacterium thermoautotrophicum. Arch. Microbiol. 120, 135–139 (1979)Google Scholar
  11. Hippe, H., Caspari, D., Fiebig, K., Gottschalk, G.: Utilization of trimethylamine on other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc. Natl. Acad. Sci. USA 76, 494–498 (1979)Google Scholar
  12. Hungate, R. E.: Hydrogen as an intermediate in the rumen fermentation. Arch. Microbiol. 58, 158–164 (1967)Google Scholar
  13. Kuenen, J. G.: Growth yields and “maintenance energy requirement” in Thiobacillus species under energy limitation. Arch. Microbiol. 122, 183–188 (1979)Google Scholar
  14. Mah, R. A., Ward, D. M., Baresi, L., Glass, T. L.: Biogenesis of methane. Ann. Rev. Microbiol. 31, 309–341 (1977)Google Scholar
  15. Mainzer, S. E., Hempfling, W. P.: Effects of growth temperature on yield and maintenance during glucose limited continuous culture of Escherichia coli. J. Bacteriol. 126, 251–256 (1976)Google Scholar
  16. McInerney, M. J., Bryant, M. P., Pfennig, N.: Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch. Microbiol. 122, 129–135 (1979)Google Scholar
  17. Pirt, S. J.: Principles of microbe and cell cultivation. Oxford: Blackwell Scientific Publications 1975Google Scholar
  18. Pirt, S. J.: The maintenance energy of bacteria in growing cultures. Proc. Roy. Soc. London B 163, 224–231 (1965)Google Scholar
  19. Roberton, A. M., Wolfe, R. S.: Adenosine triphosphate pools in Methanobacterium. J. Bacteriol. 102, 43–51 (1970)Google Scholar
  20. Schönheit, P., Moll, J., Thauer, R. K.: Nickel, cobalt and molypdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch. Microbiol. 123, 105–107 (1979)Google Scholar
  21. Stadtman, T. C.: Methane fermentation. Annu. Rev. Microbiol. 21, 121–142 (1967)Google Scholar
  22. Stephen, H., Stephen, T.: Solubilities of inorganic and organic compounds. Vol. 1. Oxford, London, New York, Paris: Pergamon Press 1963Google Scholar
  23. Stouthamer, A. H., Bettenhaussen, C.: Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochim. Biophys. Acta 301, 53–70 (1973)Google Scholar
  24. Stouthamer, A. H., Bettenhaussen, C. W.: Determination of the efficiency of oxidative phosphorylation in continuous cultures of Aerobacter aerogenes. Arch. Microbiol. 102, 187–192 (1975)Google Scholar
  25. Taylor, G. T., Pirt, S. J.: Nutrition and factors limiting the growth of methanogenic bacterium (Methanobacterium thermoautotrophicum). Arch. Microbiol. 113, 17–22 (1977)Google Scholar
  26. Tempest, D. W.: The biochemical significance of microbial growth yields: a reassessment. Trends Biochem. Sciences 3, 180–184 (1978)Google Scholar
  27. Tewes, F. J., Thauer, R. K.: Regulation of ATP-synthesis in Glucose fermenting bacteria involved in interspecies hydrogen transfer. In: Syntrophism and other microbial interactions. Stuttgart: Fischer 1979Google Scholar
  28. Thauer, R. K., Fuchs, G.: Methanogene Bakterien. Naturwissenschaften 66, 89–94 (1979)Google Scholar
  29. Thauer, R. K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977)Google Scholar
  30. Uden, N. van: Kinetics of nutrient-limited growth. Ann. Rev. Microbiol. 23, 473–486 (1969)Google Scholar
  31. Weimer, P. J., Zeikus, J. G.: One carbon metabolism in methanogenic bacteria: Cellular characterization and growth of Methanosarcina barkeri. Arch. Microbiol. 119, 175–182 (1978)Google Scholar
  32. Wolfe, R. S.: Microbial biochemistry of methane: a study in contrasts. Part I: Methanogenesis. In: Microbial Biochemistry, Vol. 21 (J. R. Quayle, ed.), pp. 268–300. Baltimore: University Park Press 1979Google Scholar
  33. Wolin, E. A., Wolfe, R. S., Wolin, M. J.: Viologen dye inhibition of methane fermentation by Methanobacilus omelianskii. J. Bacteriol. 87, 993–998 (1964)Google Scholar
  34. Zehnder, A. J. B.: Ecology of methane formation: In: Water pollution microbiology, Vol. 2 (R. Mitchell, ed.), pp. 349–376. New York: John Wiley and Sons, Inc. 1978Google Scholar
  35. Zehnder, A., Wuhrmann, K.: Physiology of a Methanobacterium strain AZ. Arch. Microbiol. 111, 199–205 (1977)Google Scholar
  36. Zeikus, J. G.: The biology of methanogenic bacteria. Bact. Rev. 41, 514–541 (1977)Google Scholar
  37. Zeikus, J. G., Wolfe, R. S.: Methanobacterium thermoautotrophicum sp. n., an anerobic, autotrophic, extreme thermophile. J. Bacteriol. 109, 707–712 (1972)Google Scholar
  38. Zeikus, J. G., Fuchs, G., Kenealy, W., Thauer, R. K.: Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J. Bacteriol. 132, 604–613 (1977)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Peter Schönheit
    • 1
  • Johanna Moll
    • 1
  • Rudolf K. Thauer
    • 1
  1. 1.Fachbereich Biologie/MikrobiologiePhilipps-Universität MarburgMarburgFederal Republic of Germany

Personalised recommendations