Synthese

, Volume 69, Issue 3, pp 341–370 | Cite as

Truth and proof: The Platonism of mathematics

  • W. W. Tait
Varia

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benacerraf, P.: 1965, ‘What Numbers Could Not Be’, Philosophical Review 74, 47–73.Google Scholar
  2. Benacerraf, P.: 1973, ‘Mathematical Truth’, The Journal of Philosophy 70, 661–79.Google Scholar
  3. Benacerraf, P. and H. Putnam (eds.): 1984, Philosophy of Mathematics: Selected Readings, 2nd. edn., Cambridge University Press, Cambridge, Mass.Google Scholar
  4. Carnap, R.: 1956, ‘Empiricism, Semantics, and Ontology’, Meaning and Necessity, 2nd. edn., University of Chicago Press, Chicago, reprinted in 3.Google Scholar
  5. Chihara, C.: 1973, Ontology and the Vicious Circle Principle, Cornell University Press, Ithaca.Google Scholar
  6. Dedekind, R.: 1888, Was sind und was sollen die Zahlend, Brunswick, Vieweg.Google Scholar
  7. Dummett, M.: 1963, ‘The Philosophical Significance of Gödel's Theorem’, Ratio 5, 140–55, reprinted in 11, page references are to 11.Google Scholar
  8. Dummett, M.: 1963, ‘Platonism’, first published in 11.Google Scholar
  9. Dummett, M.: 1975, ‘The Philosophical Basis of Intuitionistic Logic’, H. E. Rose and J. C. Shepherson (eds.), Logic Colloquium '73, North-Holland, pp. 5–40, reprinted in 11, page references are to 11.Google Scholar
  10. Dummett, M.: 1977, Elements of Intuitionism, Clarendon Press, Oxford.Google Scholar
  11. Dummett, M.: 1978, Truth and Other Enigmas, Harvard University Press, Cambridge, Mass.Google Scholar
  12. Field, H.: 1980, Science Without Numbers, Princeton University Press, Princeton, N.J.Google Scholar
  13. Field, H.: 1981, ‘Realism and Anti-Realism About Mathematics’, Rice University Conference on Realism and Anti-Realism, unpublished.Google Scholar
  14. Frege, G.: 1884, Die Grundlagen der Arithmetik, Verlag von Wilhelm Koebner, Breslau.Google Scholar
  15. Gödel, K.: 1947, ‘What Is Cantor's Continuum Problem?’, American Mathematical Monthly 54, 515–25. A revised and supplemented version appears in 3. Page references are to 3. ‘Gödel 1964’ refers to the supplement in the later version (which first appeared in the 1st. edn. of 3 in 1964).Google Scholar
  16. Jubien, M.: 1977, ‘Ontology and Mathematical Truth’, Nous 11.Google Scholar
  17. Kitcher, P.: 1978, ‘The Plight of the Platonist’, Nous 12, 119–36.Google Scholar
  18. Kitcher, P.: 1983, The Nature of Mathematical Knowledge, Oxford University Press.Google Scholar
  19. Lawvere, W.: 1964, ‘An Elementary Theory of the Category of Sets’, Proceedings of the National Academy of Science 52, 1506–11.Google Scholar
  20. Lear, T.: 1982, ‘Leaving the World Alone’, The Journal of Philosophy.Google Scholar
  21. Maddy, P.: 1980, ‘Perception and Mathematical Intuition’, Philosophical Review 89, 163–96.Google Scholar
  22. Parsons, C.: 1979–80, ‘Mathematical Intuition’, Proceedings of the Aristotelian Society pp. 145–68.Google Scholar
  23. Putnam, H.: 1979, ‘Analyticity and Aprioricity: Beyond Wittgenstein and Quine’, Midwest Studies in Philosophy IV (Studies in Metaphysics).Google Scholar
  24. Quine, W. V.: 1953, ‘On What There Is,’ From A Logical Point of View: Harvard University Press, Harvard.Google Scholar
  25. Steiner, M.: 1975, Mathematical Knowledge, Cornell University Press, Ithaca.Google Scholar
  26. Tait, W.: 1983, ‘Against Intuitionism: Constructive Mathematics Is a Part of Classical Mathematics’, The Journal of Philosophy 12, 173–95.Google Scholar
  27. Wittgenstein, L.: 1953, Philosophical Investigations, Macmillan.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • W. W. Tait
    • 1
  1. 1.Department of PhilosophyUniversity of ChicagoChicagoU.S.A.

Personalised recommendations